Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 3, Pages 336–372
DOI: https://doi.org/10.1070/SM9143
(Mi sm9143)
 

This article is cited in 3 scientific papers (total in 3 papers)

Global extrema of the Delange function, bounds for digital sums and concave functions

O. E. Galkin, S. Yu. Galkina

National Research University Higher School of Economics, Nizhny Novgorod Branch, Nizhny Novgorod, Russia
References:
Abstract: The sums $S_q(N)$ are defined by the equality $S_q(N)=s_q(1)+\dots+s_q(N-1)$ for all positive integers $N$ and $q\geqslant2$, where $s_q(n)$ is the sum of digits of the integer $n$ written in the system with base $q$. In 1975 Delange generalised Trollope's formula and proved that $S_q(N)/N-({q-1})/2\cdot\log_qN=-1/2\cdot f_q(q^{\{\log_q N\}-1})$, where $f_q(x)=(q-1)\log_q x+D_q(x)/x$ and $D_q$ is the continuous nowhere differentiable Delange function. We find global extrema of $f_q$ and, using this, obtain a precise bound for the difference $S_q(N)/N-(q-1)/2\cdot\log_qN$. In the case $q=2$ this becomes the bound for binary sums proved by Krüppel in 2008 and also earlier by other authors. We also evaluate the global extrema of some other continuous nowhere differentiable functions. We introduce the natural concave hull of a function and prove a criterion simplifying the evaluation of this hull. Moreover, we introduce the notion of an extreme subargument of a function on a convex set. We show that all points of global maximum of the difference $f-g$, where the function $g$ is strictly concave and some additional conditions hold, are extreme subarguments for $f$. A similar result is obtained for functions of the form $v+f/w$. We evaluate the global extrema and find extreme subarguments of the Delange function on the interval $[0,1]$. The results in the paper are illustrated by graphs and tables.
Bibliography: 16 titles.
Keywords: Trollope-Delange formula for digital sums, continuous nowhere differentiable Delange function, global extrema of a non-differentiable function, extreme subarguments (subabscissas) of a function, natural concave hull of a function.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-00782-а
This research was supported by the Russian Foundation for Basic Research (grant no. 19-07-00782-a).
Received: 27.06.2018 and 05.12.2019
Bibliographic databases:
Document Type: Article
UDC: 517.18+517.521.15+517.518.244
MSC: Primary 26A27; Secondary 26A30
Language: English
Original paper language: Russian
Citation: O. E. Galkin, S. Yu. Galkina, “Global extrema of the Delange function, bounds for digital sums and concave functions”, Sb. Math., 211:3 (2020), 336–372
Citation in format AMSBIB
\Bibitem{GalGal20}
\by O.~E.~Galkin, S.~Yu.~Galkina
\paper Global extrema of the Delange function, bounds for digital sums and concave functions
\jour Sb. Math.
\yr 2020
\vol 211
\issue 3
\pages 336--372
\mathnet{http://mi.mathnet.ru//eng/sm9143}
\crossref{https://doi.org/10.1070/SM9143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045697}
\zmath{https://zbmath.org/?q=an:1440.26005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..336G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000536261400001}
\elib{https://elibrary.ru/item.asp?id=45495916}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087445807}
Linking options:
  • https://www.mathnet.ru/eng/sm9143
  • https://doi.org/10.1070/SM9143
  • https://www.mathnet.ru/eng/sm/v211/i3/p32
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:396
    Russian version PDF:71
    English version PDF:25
    References:50
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024