Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 4, Pages 508–549
DOI: https://doi.org/10.1070/SM9106
(Mi sm9106)
 

This article is cited in 15 scientific papers (total in 15 papers)

The foundations of $(2n,k)$-manifolds

V. M. Buchstabera, S. Terzićb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Faculty of Science and Mathematics, University of Montenegro, Podgorica, Montenegro
References:
Abstract: The focus of our paper is a system of axioms that serves as a basis for introducing structural data for $(2n,k)$-manifolds $M^{2n}$, where $M^{2n}$ is a smooth, compact $2n$-dimensional manifold with a smooth effective action of the $k$-dimensional torus $T^k$. In terms of these data a construction of a model space $\mathfrak E$ with an action of the torus $T^k$ is given such that there exists a $T^k$-equivariant homeomorphism $\mathfrak E\to M^{2n}$. This homeomorphism induces a homeomorphism $\mathfrak E/T^k\to M^{2n}/T^k$. The number $d=n-k$ is called the complexity of a $(2n,k)$-manifold. Our theory comprises toric geometry and toric topology, where $d=0$. It is shown that the class of homogeneous spaces $G/H$ of compact Lie groups, where $\operatorname{rk}G=\operatorname{rk}H$, contains $(2n,k)$-manifolds that have nonzero complexity. The results are demonstrated on the complex Grassmann manifolds $G_{k+1,q}$ with an effective action of the torus $T^k$.
Bibliography: 23 titles.
Keywords: toric topology, manifolds with torus action, orbit space, moment map, complex Grassmann manifold.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-50005-ЯФ_а
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 18-51-50005-ЯФ_а).
Received: 29.03.2018 and 14.01.2019
Bibliographic databases:
Document Type: Article
UDC: 515.164.8+515.164.22+515.165.2
Language: English
Original paper language: Russian
Citation: V. M. Buchstaber, S. Terzić, “The foundations of $(2n,k)$-manifolds”, Sb. Math., 210:4 (2019), 508–549
Citation in format AMSBIB
\Bibitem{BucTer19}
\by V.~M.~Buchstaber, S.~Terzi\'c
\paper The foundations of $(2n,k)$-manifolds
\jour Sb. Math.
\yr 2019
\vol 210
\issue 4
\pages 508--549
\mathnet{http://mi.mathnet.ru//eng/sm9106}
\crossref{https://doi.org/10.1070/SM9106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3942833}
\zmath{https://zbmath.org/?q=an:1427.57021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..508B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000471828000003}
\elib{https://elibrary.ru/item.asp?id=37180601}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071098062}
Linking options:
  • https://www.mathnet.ru/eng/sm9106
  • https://doi.org/10.1070/SM9106
  • https://www.mathnet.ru/eng/sm/v210/i4/p41
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024