Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 8, Pages 1129–1147
DOI: https://doi.org/10.1070/SM9099
(Mi sm9099)
 

This article is cited in 2 scientific papers (total in 2 papers)

On maximizers of a convolution operator in $L_p$-spaces

G. V. Kalacheva, S. Yu. Sadovb

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow, Russia
References:
Abstract: The paper is concerned with convolution operators in $\mathbb R^d$, whose kernels are in $L_q$, which act from $L_p$ into $L_s$, where $1/p+1/q=1+1/s$. It is shown that for $1<q,p,s<\infty$ there exists a maximizer (a function with $L_p$-norm $1$) at which the supremum of the $s$-norm of the convolution is attained. A special analysis is carried out for the cases in which one of the exponents $q,p$, or $s$ is $1$ or $\infty$.
Bibliography: 12 titles.
Keywords: convolution, Young inequality, existence of an extremal function, tight sequence, concentration compactness.
Received: 18.03.2018 and 16.01.2019
Bibliographic databases:
Document Type: Article
UDC: 517.44+517.972.4
MSC: 44A35, 46E30, 49J99
Language: English
Original paper language: Russian
Citation: G. V. Kalachev, S. Yu. Sadov, “On maximizers of a convolution operator in $L_p$-spaces”, Sb. Math., 210:8 (2019), 1129–1147
Citation in format AMSBIB
\Bibitem{KalSad19}
\by G.~V.~Kalachev, S.~Yu.~Sadov
\paper On maximizers of a~convolution operator in $L_p$-spaces
\jour Sb. Math.
\yr 2019
\vol 210
\issue 8
\pages 1129--1147
\mathnet{http://mi.mathnet.ru//eng/sm9099}
\crossref{https://doi.org/10.1070/SM9099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985728}
\zmath{https://zbmath.org/?q=an:1435.44003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210.1129K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000508164100003}
\elib{https://elibrary.ru/item.asp?id=38593081}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087443480}
Linking options:
  • https://www.mathnet.ru/eng/sm9099
  • https://doi.org/10.1070/SM9099
  • https://www.mathnet.ru/eng/sm/v210/i8/p67
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025