Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 8, Pages 1067–1091
DOI: https://doi.org/10.1070/SM9069
(Mi sm9069)
 

This article is cited in 6 scientific papers (total in 6 papers)

Isomorphisms and elementary equivalence of Chevalley groups over commutative rings

E. I. Bunina

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: It is proved that two Chevalley groups with indecomposable root systems of rank $>1$ over commutative rings (which contain in addition $1/2$ for the types $\mathbf A_2$, $\mathbf B_l$, $\mathbf C_l$, $\mathbf F_4$, and $\mathbf G_2$, and $1/3$ for the type $\mathbf G_2$) are isomorphic or elementarily equivalent if and only if the corresponding root systems coincide, the weight lattices of the representation of the Lie algebra coincide, and the rings are isomorphic or elementarily equivalent, respectively. The isomorphisms of adjoint (elementary) Chevalley groups over the rings of the above types are also described.
Bibliography: 25 titles.
Keywords: Chevalley groups over commutative rings, automorphisms, isomorphisms, elementary equivalence.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00895-а
This research was supported by the Russian Foundation for Basic Research (grant no. 17-01-00895-a).
Received: 20.01.2018 and 30.09.2018
Bibliographic databases:
Document Type: Article
UDC: 512.54.03+512.743.7
MSC: Primary 20G35; Secondary 20G41, 20H25
Language: English
Original paper language: Russian
Citation: E. I. Bunina, “Isomorphisms and elementary equivalence of Chevalley groups over commutative rings”, Sb. Math., 210:8 (2019), 1067–1091
Citation in format AMSBIB
\Bibitem{Bun19}
\by E.~I.~Bunina
\paper Isomorphisms and elementary equivalence of Chevalley groups over commutative rings
\jour Sb. Math.
\yr 2019
\vol 210
\issue 8
\pages 1067--1091
\mathnet{http://mi.mathnet.ru//eng/sm9069}
\crossref{https://doi.org/10.1070/SM9069}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985726}
\zmath{https://zbmath.org/?q=an:1472.20110}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210.1067B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000508164100001}
\elib{https://elibrary.ru/item.asp?id=38593079}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087437794}
Linking options:
  • https://www.mathnet.ru/eng/sm9069
  • https://doi.org/10.1070/SM9069
  • https://www.mathnet.ru/eng/sm/v210/i8/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025