Abstract:
We give an equivalent description of Besov spaces in terms of a new modulus of continuity. Then we use a similar approach to introduce Besov classes on an infinite-dimensional space endowed with a Gaussian measure.
Bibliography: 25 titles.
This publication is cited in the following 12 articles:
Egor Kosov, Anastasia Zhukova, “Improved bounds for the total variation distance between stochastic polynomials”, Stoch. Proc. Appl., 170 (2024), 104279–15
Oscar Domínguez, Yinqin Li, Sergey Tikhonov, Dachun Yang, Wen Yuan, “A unified approach to self-improving property via K-functionals”, Calc. Var., 63:9 (2024)
V. I. Bogachev, “Sobolev and Besov Classes on Infinite-Dimensional Spaces”, Proc. Steklov Inst. Math., 323 (2023), 59–80
E. D. Kosov, “Regularity of Distributions of Sobolev Mappings in Abstract Settings”, Math. Notes, 114:5 (2023), 862–874
E. D. Kosov, “Distributions of Polynomials in Gaussian Random Variables under Constraints on the Powers of Variables”, Funct. Anal. Appl., 56:2 (2022), 101–109
E. D. Kosov, “Regularity of linear and polynomial images of Skorohod differentiable measures”, Advances in Mathematics, 397 (2022), 108193
G. I. Zelenov, “On distributions of trigonometric polynomials in Gaussian random variables”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 37 (2021), 77–92
V. I. Bogachev, “Chebyshev–Hermite polynomials and distributions of polynomials in Gaussian random variables”, Theory Probab. Appl., 66:4 (2022), 550–569
V. I. Bogachev, “On Skorokhod differentiable measures”, Ukr. Mat. Zhurn., 72:9 (2020), 1159
G. I. Zelenov, “Drobnaya gladkost raspredelenii trigonometricheskikh polinomov na prostranstve s gaussovskoi meroi”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 31 (2020), 78–95
E. D. Kosov, “On fractional regularity of distributions of functions in gaussian random variables”, Fract. Calc. Appl. Anal., 22:5 (2019), 1249–1268
Vladimir I. Bogachev, Egor D. Kosov, Svetlana N. Popova, “A new approach to Nikolskii–Besov classes”, Mosc. Math. J., 19:4 (2019), 619–654