Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 6, Pages 862–909
DOI: https://doi.org/10.1070/SM9055
(Mi sm9055)
 

This article is cited in 9 scientific papers (total in 9 papers)

Naturally graded Lie algebras of slow growth

D. V. Millionshchikovab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: A pro-nilpotent Lie algebra $\mathfrak g$ is said to be naturally graded if it is isomorphic to its associated graded Lie algebra $\operatorname{gr}\mathfrak g$ with respect to the filtration by the ideals in the lower central series. Finite-dimensional naturally graded Lie algebras are known in sub-Riemannian geometry and geometric control theory, where they are called Carnot algebras.
We classify the finite-dimensional and infinite-dimensional naturally graded Lie algebras $\mathfrak g=\bigoplus_{i=1}^{+\infty}\mathfrak g_i$ with the property
$$ \dim\mathfrak g_i+\dim\mathfrak g_{i+1}\leqslant3,\qquad i\geqslant1. $$
An arbitrary Lie algebra $\mathfrak g=\bigoplus_{i=1}^{+\infty}\mathfrak g_i$ of this class is generated by the two-dimensional subspace $\mathfrak g_1$, and the corresponding growth function $F_\mathfrak g^\mathrm{gr}(n)$ satisfies the bound $F_\mathfrak g^\mathrm{gr}(n)\leqslant3n/2+1$.
Bibliography: 32 titles.
Keywords: graded Lie algebra, Carnot algebra, Kac-Moody algebras, central extension, automorphism.
Funding agency Grant number
Russian Science Foundation 14-11-00414
This work was supported by the Russian Science Foundation under grant 14-11-00414.
Received: 27.12.2017 and 31.05.2018
Russian version:
Matematicheskii Sbornik, 2019, Volume 210, Number 6, Pages 111–160
DOI: https://doi.org/10.4213/sm9055
Bibliographic databases:
Document Type: Article
UDC: 512.812.4
MSC: 17B30
Language: English
Original paper language: Russian
Citation: D. V. Millionshchikov, “Naturally graded Lie algebras of slow growth”, Mat. Sb., 210:6 (2019), 111–160; Sb. Math., 210:6 (2019), 862–909
Citation in format AMSBIB
\Bibitem{Mil19}
\by D.~V.~Millionshchikov
\paper Naturally graded Lie algebras of slow growth
\jour Mat. Sb.
\yr 2019
\vol 210
\issue 6
\pages 111--160
\mathnet{http://mi.mathnet.ru/sm9055}
\crossref{https://doi.org/10.4213/sm9055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954340}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..862M}
\elib{https://elibrary.ru/item.asp?id=37652220}
\transl
\jour Sb. Math.
\yr 2019
\vol 210
\issue 6
\pages 862--909
\crossref{https://doi.org/10.1070/SM9055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000482090700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072738057}
Linking options:
  • https://www.mathnet.ru/eng/sm9055
  • https://doi.org/10.1070/SM9055
  • https://www.mathnet.ru/eng/sm/v210/i6/p111
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:655
    Russian version PDF:65
    English version PDF:31
    References:54
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024