Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2019, Volume 210, Issue 2, Pages 234–244
DOI: https://doi.org/10.1070/SM9034
(Mi sm9034)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree 3 or 4

A. V. Grishin

Moscow State Pedagogical University, Moscow, Russia
References:
Abstract: This work is concerned with the concept of a graded subspace of the polylinear part of a relatively free algebra and with the measure of inclusion of such a subspace. Other asymptotic characteristics are also considered. In the case of relatively free algebras with the identity of Lie nilpotency of degree 3 and 4, the measure of inclusion is computed for many subspaces; in particular, for the centre and the $T$-space generated by the commutator this measure is $1/2$.
Bibliography: 17 titles.
Keywords: identity of Lie nilpotency, Frobenius relations, graded subspace, measure of inclusion, rate of growth.
Received: 04.11.2017 and 11.04.2018
Russian version:
Matematicheskii Sbornik, 2019, Volume 210, Number 2, Pages 75–86
DOI: https://doi.org/10.4213/sm9034
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: Primary 16R10; Secondary 16R40
Language: English
Original paper language: Russian
Citation: A. V. Grishin, “On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree 3 or 4”, Sb. Math., 210:2 (2019), 234–244
Citation in format AMSBIB
\Bibitem{Gri19}
\by A.~V.~Grishin
\paper On the measure of inclusion in relatively free algebras with the identity of Lie nilpotency of degree~3 or~4
\jour Sb. Math.
\yr 2019
\vol 210
\issue 2
\pages 234--244
\mathnet{http://mi.mathnet.ru//eng/sm9034}
\crossref{https://doi.org/10.1070/SM9034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920442}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019SbMat.210..234G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000465078600003}
\elib{https://elibrary.ru/item.asp?id=37089808}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067234471}
Linking options:
  • https://www.mathnet.ru/eng/sm9034
  • https://doi.org/10.1070/SM9034
  • https://www.mathnet.ru/eng/sm/v210/i2/p75
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:356
    Russian version PDF:28
    English version PDF:11
    References:43
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024