Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 4, Pages 519–559
DOI: https://doi.org/10.1070/SM8998
(Mi sm8998)
 

This article is cited in 32 scientific papers (total in 33 papers)

On the problem of periodicity of continued fractions in hyperelliptic fields

V. P. Platonov, G. V. Fedorov

Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow
References:
Abstract: We present new results concerning the problem of periodicity of continued fractions which are expansions of quadratic irrationalities in a field $K((h))$, where $K$ is a field of characteristic different from 2, $h \in K[x]$, $\deg h=1$.
Let $f \in K[h]$ be a square-free polynomial and suppose that the valuation $v_h$ of the field $K(x)$ has two extensions $v_h^-$ and $v_h^+$ to the field $L=K(h)(\sqrt{f})$. We set $S_h=\{v_h^-,v_h^+\}$. A deep connection between the periodicity of continued fractions in the field $K((h))$ and the existence of $S_h$-units made it possible to make great advances in the study of periodic and quasiperiodic elements of the field $L$, and also in problems connected with searching for fundamental $S_h$-units. Using a new efficient algorithm to search for solutions of the norm equation in the field $L$ we manage to find examples of periodic continued fractions of elements of the form $\sqrt{f}$, which is a fairly rare phenomenon. For the case of an elliptic field $L=\mathbb{Q}(x)(\sqrt{f})$, $\deg f=3$, we describe all square-free polynomials $f \in \mathbb{Q}[h]$ with a periodic expansion of $\sqrt{f}$ into a continued fraction in the field $\mathbb{Q}((h))$.
Bibliography: 16 titles.
Keywords: hyperelliptic fields, continued fractions, periodicity, $S$-units, problem of torsion in Jacobian.
Funding agency Grant number
Russian Science Foundation 16-11-10111
This work was supported by the Russian Science Foundation under grant no. 16-11-10111.
Received: 25.07.2017
Bibliographic databases:
Document Type: Article
UDC: 511.6
MSC: Primary 11R58; Secondary 11J70, 11R27
Language: English
Original paper language: Russian
Citation: V. P. Platonov, G. V. Fedorov, “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559
Citation in format AMSBIB
\Bibitem{PlaFed18}
\by V.~P.~Platonov, G.~V.~Fedorov
\paper On the problem of periodicity of continued fractions in hyperelliptic fields
\jour Sb. Math.
\yr 2018
\vol 209
\issue 4
\pages 519--559
\mathnet{http://mi.mathnet.ru//eng/sm8998}
\crossref{https://doi.org/10.1070/SM8998}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780079}
\zmath{https://zbmath.org/?q=an:1445.11135}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..519P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436042300004}
\elib{https://elibrary.ru/item.asp?id=32641401}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049825678}
Linking options:
  • https://www.mathnet.ru/eng/sm8998
  • https://doi.org/10.1070/SM8998
  • https://www.mathnet.ru/eng/sm/v209/i4/p54
  • This publication is cited in the following 33 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:587
    Russian version PDF:87
    English version PDF:25
    References:56
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024