Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 8, Pages 1248–1256
DOI: https://doi.org/10.1070/SM8971
(Mi sm8971)
 

This article is cited in 5 scientific papers (total in 5 papers)

A canonical basis of two-cycles on a $K3$ surface

I. A. Taimanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: We construct a basis of two-cycles on a $K3$ surface; in this basis, the intersection form takes the canonical form $2E_8(-1) \oplus 3H$. Elements of the basis are realized by formal sums of smooth submanifolds.
Bibliography: 8 titles.
Keywords: $K3$ surface, intersection form.
Funding agency Grant number
Russian Science Foundation 14-11-00441
The research was supported by Russian Science Foundation under grant no. 14-11-00441.
Received: 22.05.2017 and 05.02.2018
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 8, Pages 152–160
DOI: https://doi.org/10.4213/sm8971
Bibliographic databases:
Document Type: Article
UDC: 515.165.2+515.162.4
MSC: Primary 14J28; Secondary 57N13
Language: English
Original paper language: Russian
Citation: I. A. Taimanov, “A canonical basis of two-cycles on a $K3$ surface”, Sb. Math., 209:8 (2018), 1248–1256
Citation in format AMSBIB
\Bibitem{Tai18}
\by I.~A.~Taimanov
\paper A~canonical basis of two-cycles on a~$K3$ surface
\jour Sb. Math.
\yr 2018
\vol 209
\issue 8
\pages 1248--1256
\mathnet{http://mi.mathnet.ru//eng/sm8971}
\crossref{https://doi.org/10.1070/SM8971}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833539}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1248T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448025000007}
\elib{https://elibrary.ru/item.asp?id=35276524}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055791117}
Linking options:
  • https://www.mathnet.ru/eng/sm8971
  • https://doi.org/10.1070/SM8971
  • https://www.mathnet.ru/eng/sm/v209/i8/p152
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:480
    Russian version PDF:65
    English version PDF:28
    References:43
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024