Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 8, Pages 1207–1224
DOI: https://doi.org/10.1070/SM8915
(Mi sm8915)
 

The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions

E. Yu. Panov

Novgorod State University after Yaroslav the Wise
References:
Abstract: The existence and uniqueness of a generalized entropy solution in the class of Besicovitch almost periodic functions is proved for the Cauchy problem for a multidimensional inhomogeneous quasilinear equation of the first order.
Bibliography: 12 titles.
Keywords: first order quasilinear equation, generalized entropy solution, Besicovitch almost periodic function, spectrum.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-07650-а
Ministry of Education and Science of the Russian Federation 1.445.2016/1.4
This research was carried out with the support of the Russian Foundation for Basic Research (grant no. 15-01-07650-a) and the Ministry of Education and Science of the Russian Federation (project no. 1.445.2016/1.4).
Received: 20.01.2017 and 17.05.2017
Bibliographic databases:
Document Type: Article
UDC: 517.956
MSC: 35B15, 35L60
Language: English
Original paper language: Russian
Citation: E. Yu. Panov, “The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions”, Sb. Math., 208:8 (2017), 1207–1224
Citation in format AMSBIB
\Bibitem{Pan17}
\by E.~Yu.~Panov
\paper The Cauchy problem for a~first-order quasilinear equation in the class of Besicovitch almost periodic functions
\jour Sb. Math.
\yr 2017
\vol 208
\issue 8
\pages 1207--1224
\mathnet{http://mi.mathnet.ru//eng/sm8915}
\crossref{https://doi.org/10.1070/SM8915}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3682806}
\zmath{https://zbmath.org/?q=an:1379.35007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1207P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413222800006}
\elib{https://elibrary.ru/item.asp?id=29833719}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049157695}
Linking options:
  • https://www.mathnet.ru/eng/sm8915
  • https://doi.org/10.1070/SM8915
  • https://www.mathnet.ru/eng/sm/v208/i8/p126
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024