|
This article is cited in 2 scientific papers (total in 2 papers)
Constrained extremal problems in $H^2$ and Carleman's formulae
L. Baratchart, J. Leblond, F. Seyfert Institut National de Recherche en Informatique et en Automatique,
Sophia Antipolis – Méditerranée, France
Abstract:
We consider the extremal problem of best approximation to some function $f$ in $L^2(I)$, with $I$ a subset of the circle, by the trace of a Hardy function whose modulus is bounded pointwise by some gauge function on the complementary subset.
Bibliography: 36 titles.
Keywords:
Hardy spaces, extremal problems, approximations in the complex domain, Cauchy problem, inverse boundary problems.
Received: 30.12.2016 and 09.02.2018
Citation:
L. Baratchart, J. Leblond, F. Seyfert, “Constrained extremal problems in $H^2$ and Carleman's formulae”, Mat. Sb., 209:7 (2018), 4–43; Sb. Math., 209:7 (2018), 922–957
Linking options:
https://www.mathnet.ru/eng/sm8900https://doi.org/10.1070/SM8900 https://www.mathnet.ru/eng/sm/v209/i7/p4
|
Statistics & downloads: |
Abstract page: | 410 | Russian version PDF: | 98 | English version PDF: | 20 | References: | 64 | First page: | 25 |
|