Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 81, Issue 2, Pages 397–419
DOI: https://doi.org/10.1070/SM1995v081n02ABEH003544
(Mi sm889)
 

This article is cited in 12 scientific papers (total in 12 papers)

Stable vector bundles on projective surfaces

F. A. Bogomolov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: An effective variant of an arithmetic criterion for instability of vector bundles on a surface is considered. Namely, a lower bound is established for the degree of a destabilizing subsheaf in a vector bundle with positive discriminant. This bound, which depends on the rank and discriminant of the bundle, is used to prove that the restrictions of stable bundles on a surface to curves are stable, and to prove a number of other results.
Received: 25.08.1993
Bibliographic databases:
Document Type: Article
UDC: 512
MSC: Primary 14J60, 14F05; Secondary 14J10, 14D20, 14J05
Language: English
Original paper language: Russian
Citation: F. A. Bogomolov, “Stable vector bundles on projective surfaces”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 397–419
Citation in format AMSBIB
\Bibitem{Bog94}
\by F.~A.~Bogomolov
\paper Stable vector bundles on projective surfaces
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 81
\issue 2
\pages 397--419
\mathnet{http://mi.mathnet.ru/eng/sm889}
\crossref{https://doi.org/10.1070/SM1995v081n02ABEH003544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1272185}
\zmath{https://zbmath.org/?q=an:0838.14036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RB51300007}
Linking options:
  • https://www.mathnet.ru/eng/sm889
  • https://doi.org/10.1070/SM1995v081n02ABEH003544
  • https://www.mathnet.ru/eng/sm/v185/i4/p3
  • This publication is cited in the following 12 articles:
    1. Indranil Biswas, Manish Kumar, A. J. Parameswaran, “Bertini Type Results and Their Applications”, Acta Math Vietnam, 2024  crossref
    2. John Kopper, “Stability Conditions for Restrictions of Vector Bundles on Projective Surfaces”, Michigan Math. J., 69:4 (2020)  crossref
    3. Feng Hao, “Weak bounded negativity conjecture”, Proc. Amer. Math. Soc., 147:8 (2019), 3233  crossref
    4. Nils Henry Williams Rasmussen, “Pencils and nets of small degree on curves on smooth, projective surfaces of Picard rank 1 and very ample generator”, Arch. Math., 105:6 (2015), 557  crossref
    5. Gian Mario BESANA, Maria Lucia FANIA, Flaminio FLAMINI, “Hilbert scheme of some threefold scrolls over the Hirzebruch surface F1”, J. Math. Soc. Japan, 65:4 (2013)  crossref
    6. Balaji V., Kollar J., “Restrictions of Stable Bundles”, Compact Moduli Spaces and Vector Bundles, Contemporary Mathematics, 564, eds. Alexeev V., Gibney A., Izadi E., Kollar J., Looijenga E., Amer Mathematical Soc, 2012, 177–184  crossref  mathscinet  zmath  isi
    7. Indranil Biswas, Arijit Dey, “Bogomolov restriction theorem for Higgs bundles”, Bulletin des Sciences Mathématiques, 135:2 (2011), 178  crossref  mathscinet  zmath
    8. Indranil Biswas, “Monodromy for principal bundles”, Journal of Pure and Applied Algebra, 214:12 (2010), 2251  crossref  mathscinet  zmath
    9. Holger Brenner, “Looking out for stable syzygy bundles”, Advances in Mathematics, 219:2 (2008), 401  crossref  mathscinet  zmath
    10. Balaji V., Kollar J., “Holonomy Groups of Stable Vector Bundles”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 183–211  crossref  mathscinet  zmath  isi
    11. Bogomolov F., De Oliveira B., “Holomorphic Functions and Vector Bundles on Coverings of Projective Varieties”, Asian J. Math., 9:3 (2005), 295–314  crossref  mathscinet  zmath  isi
    12. A. N. Tyurin, “Canonical spin polynomials of an algebraic surface. I”, Russian Acad. Sci. Izv. Math., 45:3 (1995), 577–621  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:631
    Russian version PDF:265
    English version PDF:34
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025