Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 5, Pages 759–779
DOI: https://doi.org/10.1070/SM8888
(Mi sm8888)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables

R. M. Trigub

Sumy State University, Ukraine
References:
Abstract: Given an $L_1(\mathbb{R}^2)$-function $f(x_1,x_2)=f_0(\max\{|x_1|,|x_2|\})$, necessary conditions and sufficient conditions for its Fourier transform $\widehat{f}$ to lie in $L_1(\mathbb{R}^2)$ and for the function $t\mapsto t\sup_{y_1^2+y_2^2\geqslant t^2}|\widehat{f}(y_1,y_2)|$ to be in $L_1(\mathbb{R}_{+})$ are indicated. The problem of the positivity of $\widehat{f}$ on $\mathbb{R}^2$ is shown to be completely reducible to the same problem for the function $\displaystyle f_1(x)=|x|f_0(x)+\int_{|x|}^\infty f_0(t)\,dt$ in $\mathbb{R}$.
Bibliography: 20 titles.
Keywords: Wiener Banach algebra, positive definiteness, Bernstein's theorem on completely monotone functions, Marcinkiewicz sums of a double Fourier series, Lebesgue points, Wiener approximation theorem.
Received: 18.12.2016 and 03.05.2017
Bibliographic databases:
Document Type: Article
UDC: 517.518.5+517.518.476
MSC: Primary 42B10; Secondary 42B35
Language: English
Original paper language: Russian
Citation: R. M. Trigub, “The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables”, Sb. Math., 209:5 (2018), 759–779
Citation in format AMSBIB
\Bibitem{Tri18}
\by R.~M.~Trigub
\paper The Fourier transform of bivariate functions that depend only on the maximum of the absolute values of their variables
\jour Sb. Math.
\yr 2018
\vol 209
\issue 5
\pages 759--779
\mathnet{http://mi.mathnet.ru//eng/sm8888}
\crossref{https://doi.org/10.1070/SM8888}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3795155}
\zmath{https://zbmath.org/?q=an:1398.42007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..759T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000439467500007}
\elib{https://elibrary.ru/item.asp?id=32823066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052025965}
Linking options:
  • https://www.mathnet.ru/eng/sm8888
  • https://doi.org/10.1070/SM8888
  • https://www.mathnet.ru/eng/sm/v209/i5/p166
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:622
    Russian version PDF:243
    English version PDF:13
    References:64
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024