Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 7, Pages 992–1013
DOI: https://doi.org/10.1070/SM8838
(Mi sm8838)
 

This article is cited in 14 scientific papers (total in 14 papers)

Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds

V. V. Przyjalkowski

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We prove that smooth Fano threefolds have toric Landau-Ginzburg models. More precisely, we prove that their Landau-Ginzburg models, represented as Laurent polynomials, admit compactifications to families of K3 surfaces, and we describe their fibres over infinity. We also give an explicit construction of Landau-Ginzburg models for del Pezzo surfaces and any divisors on them.
Bibliography: 40 titles.
Keywords: Fano threefolds, toric Landau-Ginzburg models, Calabi-Yau compactifications.
Funding agency Grant number
Russian Science Foundation 14-50-00005
The research was funded by a grant of the Russian Science Foundation (project no. 14-50-00005).
Received: 14.10.2016 and 09.03.2017
Bibliographic databases:
Document Type: Article
UDC: 512.776
MSC: Primary 14D07, 14J30, 14J45; Secondary 14M25, 14N35
Language: English
Original paper language: Russian
Citation: V. V. Przyjalkowski, “Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds”, Sb. Math., 208:7 (2017), 992–1013
Citation in format AMSBIB
\Bibitem{Prz17}
\by V.~V.~Przyjalkowski
\paper Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds
\jour Sb. Math.
\yr 2017
\vol 208
\issue 7
\pages 992--1013
\mathnet{http://mi.mathnet.ru//eng/sm8838}
\crossref{https://doi.org/10.1070/SM8838}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3670240}
\zmath{https://zbmath.org/?q=an:1386.14055}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208..992P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411475900004}
\elib{https://elibrary.ru/item.asp?id=29438819}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029715710}
Linking options:
  • https://www.mathnet.ru/eng/sm8838
  • https://doi.org/10.1070/SM8838
  • https://www.mathnet.ru/eng/sm/v208/i7/p84
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024