Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 10, Pages 1449–1472
DOI: https://doi.org/10.1070/SM8818
(Mi sm8818)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mapping degrees between spherical $3$-manifolds

D. Gonçalvesa, P. Wongb, X. Zhaoc

a Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brasil
b Department of Mathematics, Bates College, Lewiston, ME, USA
c Department of Mathematics, Capital Normal University, Beijing, China
References:
Abstract: Let $D(M,N)$ be the set of integers that can be realized as the degree of a map between two closed connected orientable manifolds $M$ and $N$ of the same dimension. For closed $3$-manifolds $M$ and $N$ with $S^3$-geometry, every such degree $\operatorname{deg} f\equiv \overline {\operatorname{deg}}\psi \mod |\pi_1(N)|$ where $0\le \overline {\operatorname{deg}}\psi <|\pi_1(N)|$ and $\overline {\operatorname{deg}}\psi$ only depends on the induced homomorphism $\psi=f_{\pi}$ on the fundamental group. In this paper, we calculate the set $\{\overline{\operatorname{deg}}\psi\}$ explicitly when $\psi$ is surjective and then we show how to determine $\overline{\operatorname{deg}}(\psi)$ for arbitrary homomorphisms. This leads to the determination of the set $D(M,N)$.
Bibliography: 22 titles.
Keywords: $3$-manifolds, mapping degrees.
Funding agency Grant number
Projeto Temático Topologia Algébrica Geométrica e Diferencial 2012/24454-8
National Natural Science Foundation of China 11431009
This work was initiated during the first and second authors' visit to Capital Normal University (Beijing, February 16–23, 2013). D. Gonçalves' research was carried out with the partial support of the Projeto Temático Topologia Algébrica Geométrica e Diferencial (grant no. 2012/24454-8). Xuezhi Zhao's research was carried out with the partial support of the National Natural Science Foundation of China (grant no. 11431009).
Received: 22.09.2016 and 22.08.2017
Russian version:
Matematicheskii Sbornik, 2017, Volume 208, Number 10, Pages 34–58
DOI: https://doi.org/10.4213/sm8818
Bibliographic databases:
Document Type: Article
UDC: 515.162.3+515.162.6+515.164.85
MSC: Primary 55M20; Secondary 20E45
Language: English
Original paper language: Russian
Citation: D. Gonçalves, P. Wong, X. Zhao, “Mapping degrees between spherical $3$-manifolds”, Sb. Math., 208:10 (2017), 1449–1472
Citation in format AMSBIB
\Bibitem{GonWonZha17}
\by D.~Gon{\c c}alves, P.~Wong, X.~Zhao
\paper Mapping degrees between spherical $3$-manifolds
\jour Sb. Math.
\yr 2017
\vol 208
\issue 10
\pages 1449--1472
\mathnet{http://mi.mathnet.ru//eng/sm8818}
\crossref{https://doi.org/10.1070/SM8818}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3706884}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1449G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418482500002}
\elib{https://elibrary.ru/item.asp?id=30512333}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039077017}
Linking options:
  • https://www.mathnet.ru/eng/sm8818
  • https://doi.org/10.1070/SM8818
  • https://www.mathnet.ru/eng/sm/v208/i10/p34
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:358
    Russian version PDF:40
    English version PDF:17
    References:49
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024