Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 1, Pages 56–70
DOI: https://doi.org/10.1070/SM8788
(Mi sm8788)
 

This article is cited in 1 scientific paper (total in 1 paper)

Distribution of facets of higher-dimensional Klein polyhedra

A. A. Illarionov

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
References:
Abstract: We consider facets of Klein polyhedra of a given integer-linear type $\mathscr T$ in a certain lattice. Let $E_\mathscr T(N,s)$ be the typical number of facets, averaged over all integral $s$-dimensional lattices with determinant $N$. Assume that the interior of any facet of type $\mathscr T$ contains at least one point of the corresponding lattice. We prove that
$$ E_\mathscr T(N,s)=C_\mathscr T \ln^{s-1}N+O_\mathscr T (\ln^{s-2} N \cdot \ln\ln N) \quad\text{as } N \to \infty, $$
where $C_\mathscr T$ is a positive constant depending only on $\mathscr T$.
Bibliography: 28 titles.
Keywords: lattice, Klein polyhedron, multidimensional continued fraction.
Funding agency Grant number
Russian Science Foundation 14-11-00335
This research was supported by the Russian Science Foundation (project no. 14-11-00335).
Received: 15.07.2016 and 19.04.2017
Bibliographic databases:
Document Type: Article
UDC: 511.36+511.9
Language: English
Original paper language: Russian
Citation: A. A. Illarionov, “Distribution of facets of higher-dimensional Klein polyhedra”, Sb. Math., 209:1 (2018), 56–70
Citation in format AMSBIB
\Bibitem{Ill18}
\by A.~A.~Illarionov
\paper Distribution of facets of higher-dimensional Klein polyhedra
\jour Sb. Math.
\yr 2018
\vol 209
\issue 1
\pages 56--70
\mathnet{http://mi.mathnet.ru//eng/sm8788}
\crossref{https://doi.org/10.1070/SM8788}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3740296}
\zmath{https://zbmath.org/?q=an:1417.11133}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209...56I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428795800003}
\elib{https://elibrary.ru/item.asp?id=30762119}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045666635}
Linking options:
  • https://www.mathnet.ru/eng/sm8788
  • https://doi.org/10.1070/SM8788
  • https://www.mathnet.ru/eng/sm/v209/i1/p58
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024