Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 9, Pages 1261–1281
DOI: https://doi.org/10.1070/SM8782
(Mi sm8782)
 

This article is cited in 1 scientific paper (total in 1 paper)

Locally standard torus actions and sheaves over Buchsbaum posets

A. A. Ayzenberg

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Manifolds with locally standard half-dimensional torus actions represent a large and important class of spaces. Cohomology rings of such manifolds are known in particular cases, but in general even Betti numbers are difficult to compute. Our approach to this problem is the following: we consider the orbit type filtration on a manifold with locally standard action and study the induced spectral sequence in homology. It collapses at the second page only in the case when the orbit space is homologically trivial. The cohomology ring in this case has already been computed. Nevertheless, we can completely describe the spectral sequence under more general assumptions, namely when all proper faces of the orbit space are acyclic. The theory of sheaves and cosheaves on finite partially ordered sets is used in the computation. We establish generalizations of the Poincare duality and the Zeeman-McCrory spectral sequence for sheaves of ideals of exterior algebras.
Bibliography: 15 titles.
Keywords: locally standard action, manifold with corners, simplicial poset, sheaf over poset, Zeeman-McCrory spectral sequence.
Funding agency Grant number
Russian Science Foundation 14-11-00414
This research was funded by a grant of the Russian Science Foundation (project no. 14-11-00414).
Received: 08.07.2016 and 21.05.2017
Russian version:
Matematicheskii Sbornik, 2017, Volume 208, Number 9, Pages 3–25
DOI: https://doi.org/10.4213/sm8782
Bibliographic databases:
Document Type: Article
UDC: 515.145
MSC: Primary 57N65, 55R20; Secondary 55R91, 18F20, 55N30, 55U30, 18G40
Language: English
Original paper language: Russian
Citation: A. A. Ayzenberg, “Locally standard torus actions and sheaves over Buchsbaum posets”, Mat. Sb., 208:9 (2017), 3–25; Sb. Math., 208:9 (2017), 1261–1281
Citation in format AMSBIB
\Bibitem{Ayz17}
\by A.~A.~Ayzenberg
\paper Locally standard torus actions and sheaves over Buchsbaum posets
\jour Mat. Sb.
\yr 2017
\vol 208
\issue 9
\pages 3--25
\mathnet{http://mi.mathnet.ru/sm8782}
\crossref{https://doi.org/10.4213/sm8782}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598763}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208.1261A}
\elib{https://elibrary.ru/item.asp?id=29864985}
\transl
\jour Sb. Math.
\yr 2017
\vol 208
\issue 9
\pages 1261--1281
\crossref{https://doi.org/10.1070/SM8782}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416409300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039165224}
Linking options:
  • https://www.mathnet.ru/eng/sm8782
  • https://doi.org/10.1070/SM8782
  • https://www.mathnet.ru/eng/sm/v208/i9/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:457
    Russian version PDF:54
    English version PDF:18
    References:49
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024