|
This article is cited in 5 scientific papers (total in 5 papers)
Nikishin systems on star-like sets: algebraic properties and weak asymptotics of the associated multiple orthogonal polynomials
A. López-Garcíaa, E. Miña-Díazb a Department of Mathematics and Statistics, University of South Alabama, Mobile, AL, USA
b Department of Mathematics, The University of Mississippi, University, MS, USA
Abstract:
We investigate polynomials $Q_n(z)$, $n=0,1,\dots$, that are multi-orthogonal with respect to a Nikishin system of $p\geqslant 1 $ compactly supported measures over the star-like set of $p+1$ rays $S_+:=\{z\in \mathbb{C}\colon z^{p+1}\geqslant 0 \}$. We prove that the Nikishin system is normal, that the polynomials satisfy a three-term recurrence relation of order $p+1$ of the form $z Q_{n}(z)=Q_{n+1}(z)+a_{n}Q_{n-p}(z)$ with $a_n>0$ for all $n\geqslant p$, and that the nonzero roots of $Q_n$ are all simple and located in $S_+$. Under the assumption that the measures generating the Nikishin system are regular (in the sense of Stahl and Totik), we describe the asymptotic zero distribution and weak behaviour of the polynomials $Q_n$ in terms of a vector equilibrium problem for logarithmic potentials. Under the same regularity assumptions, we prove a theorem on the convergence of the Hermite-Padé approximants to the Nikishin system of Cauchy transforms.
Bibliography: 16 titles.
Keywords:
Nikishin system, multiple orthogonal polynomials, vector equilibrium problem, Hermite-Padé approximation.
Received: 26.06.2016 and 10.02.2017
Citation:
A. López-García, E. Miña-Díaz, “Nikishin systems on star-like sets: algebraic properties and weak asymptotics of the associated multiple orthogonal polynomials”, Sb. Math., 209:7 (2018), 1051–1088
Linking options:
https://www.mathnet.ru/eng/sm8768https://doi.org/10.1070/SM8768 https://www.mathnet.ru/eng/sm/v209/i7/p139
|
Statistics & downloads: |
Abstract page: | 425 | Russian version PDF: | 34 | English version PDF: | 14 | References: | 41 | First page: | 9 |
|