Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 7, Pages 1051–1088
DOI: https://doi.org/10.1070/SM8768
(Mi sm8768)
 

This article is cited in 5 scientific papers (total in 5 papers)

Nikishin systems on star-like sets: algebraic properties and weak asymptotics of the associated multiple orthogonal polynomials

A. López-Garcíaa, E. Miña-Díazb

a Department of Mathematics and Statistics, University of South Alabama, Mobile, AL, USA
b Department of Mathematics, The University of Mississippi, University, MS, USA
References:
Abstract: We investigate polynomials $Q_n(z)$, $n=0,1,\dots$, that are multi-orthogonal with respect to a Nikishin system of $p\geqslant 1 $ compactly supported measures over the star-like set of $p+1$ rays $S_+:=\{z\in \mathbb{C}\colon z^{p+1}\geqslant 0 \}$. We prove that the Nikishin system is normal, that the polynomials satisfy a three-term recurrence relation of order $p+1$ of the form $z Q_{n}(z)=Q_{n+1}(z)+a_{n}Q_{n-p}(z)$ with $a_n>0$ for all $n\geqslant p$, and that the nonzero roots of $Q_n$ are all simple and located in $S_+$. Under the assumption that the measures generating the Nikishin system are regular (in the sense of Stahl and Totik), we describe the asymptotic zero distribution and weak behaviour of the polynomials $Q_n$ in terms of a vector equilibrium problem for logarithmic potentials. Under the same regularity assumptions, we prove a theorem on the convergence of the Hermite-Padé approximants to the Nikishin system of Cauchy transforms.
Bibliography: 16 titles.
Keywords: Nikishin system, multiple orthogonal polynomials, vector equilibrium problem, Hermite-Padé approximation.
Funding agency Grant number
Ministerio de Economía y Competitividad MTM2015-65888-C4-2-P
A. López-García's research was carried out with the partial support of the Ministerio de Economía y Competitividad, Spain (grant MTM2015-65888-C4-2-P).
Received: 26.06.2016 and 10.02.2017
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 7, Pages 139–177
DOI: https://doi.org/10.4213/sm8768
Bibliographic databases:
Document Type: Article
UDC: 517.538.3+517.538.5
MSC: Primary 30C15, 30E10, 42C05; Secondary 41A21
Language: English
Original paper language: Russian
Citation: A. López-García, E. Miña-Díaz, “Nikishin systems on star-like sets: algebraic properties and weak asymptotics of the associated multiple orthogonal polynomials”, Sb. Math., 209:7 (2018), 1051–1088
Citation in format AMSBIB
\Bibitem{LopMin18}
\by A.~L\'opez-Garc{\'\i}a, E.~Mi\~na-D{\'\i}az
\paper Nikishin systems on star-like sets: algebraic properties and weak asymptotics of the associated multiple orthogonal polynomials
\jour Sb. Math.
\yr 2018
\vol 209
\issue 7
\pages 1051--1088
\mathnet{http://mi.mathnet.ru//eng/sm8768}
\crossref{https://doi.org/10.1070/SM8768}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833531}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1051L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000445503100005}
\elib{https://elibrary.ru/item.asp?id=35276515}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054846671}
Linking options:
  • https://www.mathnet.ru/eng/sm8768
  • https://doi.org/10.1070/SM8768
  • https://www.mathnet.ru/eng/sm/v209/i7/p139
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:425
    Russian version PDF:34
    English version PDF:14
    References:41
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024