Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 2, Pages 255–268
DOI: https://doi.org/10.1070/SM8684
(Mi sm8684)
 

This article is cited in 2 scientific papers (total in 2 papers)

Necessary and sufficient conditions for the existence and uniqueness of a bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$

V. E. Slyusarchuk

Ukranian State Academy of Water Economy, Rivne, Ukraine
References:
Abstract: Necessary and sufficient conditions for a bounded solution of the nonlinear scalar differential equation $dx(t)/dt=f(x(t)+h_1(t))+h_2(t)$, $t\in\mathbb{R}$, to exist and be unique are presented in the case when $f(x)$ is a continuous function and the functions $h_1(t)$ and $h_2(t)$ are bounded and continuous. The case when $h_1(t)$ and $h_2(t)$ are almost periodic functions is also investigated.
Bibliography: 31 titles.
Keywords: nonlinear differential equations, bounded and almost periodic solutions.
Received: 26.02.2016
Russian version:
Matematicheskii Sbornik, 2017, Volume 208, Number 2, Pages 88–103
DOI: https://doi.org/10.4213/sm8684
Bibliographic databases:
Document Type: Article
UDC: 517.988.63
MSC: 34A34, 34C11, 34C27
Language: English
Original paper language: Russian
Citation: V. E. Slyusarchuk, “Necessary and sufficient conditions for the existence and uniqueness of a bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$”, Mat. Sb., 208:2 (2017), 88–103; Sb. Math., 208:2 (2017), 255–268
Citation in format AMSBIB
\Bibitem{Sly17}
\by V.~E.~Slyusarchuk
\paper Necessary and sufficient conditions for the existence and uniqueness of a~bounded solution of the equation $\dfrac{dx(t)}{dt}=f(x(t)+h_1(t))+h_2(t)$
\jour Mat. Sb.
\yr 2017
\vol 208
\issue 2
\pages 88--103
\mathnet{http://mi.mathnet.ru/sm8684}
\crossref{https://doi.org/10.4213/sm8684}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3608039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208..255E}
\elib{https://elibrary.ru/item.asp?id=28172164}
\transl
\jour Sb. Math.
\yr 2017
\vol 208
\issue 2
\pages 255--268
\crossref{https://doi.org/10.1070/SM8684}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401433200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017768922}
Linking options:
  • https://www.mathnet.ru/eng/sm8684
  • https://doi.org/10.1070/SM8684
  • https://www.mathnet.ru/eng/sm/v208/i2/p88
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:470
    Russian version PDF:162
    English version PDF:17
    References:64
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024