Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 2, Pages 241–257
DOI: https://doi.org/10.1070/SM8644
(Mi sm8644)
 

This article is cited in 5 scientific papers (total in 5 papers)

The growth of entire Dirichlet series in terms of generalized orders

T. Ya. Hlovaa, P. V. Filevychb

a Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, NAS Ukraine, L'vov, Ukraine
b Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
References:
Abstract: Let $\alpha$ be a continuous function which increases to $+\infty$ on an infinite interval of the form $[x_0,+\infty)$. A necessary and sufficient condition is found on a sequence $(\lambda_n)_{n=0}^\infty$ increasing to $+\infty$ which ensures that for each Dirichlet series of the form $F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n}$, $s=\sigma+it$, which is absolutely convergent in $\mathbb{C}$ the following relation holds:
$$ \varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln M(\sigma,F))}{\sigma}=\varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln\mu(\sigma,F))}{\sigma}, $$
where $M(\sigma,F)=\sup\{|F(s)|\colon \operatorname{Re} s=\sigma\}$ and ${\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}\colon n\geqslant 0\}}$ are the maximum modulus and maximum term of the series, respectively.
Bibliography: 10 titles.
Keywords: entire Dirichlet series, maximum modulus, maximum term, generalized order.
Received: 06.12.2015 and 11.10.2017
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 2, Pages 102–119
DOI: https://doi.org/10.4213/sm8644
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30B50, 30D15
Language: English
Original paper language: Russian
Citation: T. Ya. Hlova, P. V. Filevych, “The growth of entire Dirichlet series in terms of generalized orders”, Mat. Sb., 209:2 (2018), 102–119; Sb. Math., 209:2 (2018), 241–257
Citation in format AMSBIB
\Bibitem{HloFil18}
\by T.~Ya.~Hlova, P.~V.~Filevych
\paper The growth of entire Dirichlet series in terms of generalized orders
\jour Mat. Sb.
\yr 2018
\vol 209
\issue 2
\pages 102--119
\mathnet{http://mi.mathnet.ru/sm8644}
\crossref{https://doi.org/10.4213/sm8644}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3749632}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209..241H}
\elib{https://elibrary.ru/item.asp?id=32428135}
\transl
\jour Sb. Math.
\yr 2018
\vol 209
\issue 2
\pages 241--257
\crossref{https://doi.org/10.1070/SM8644}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431983100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046546533}
Linking options:
  • https://www.mathnet.ru/eng/sm8644
  • https://doi.org/10.1070/SM8644
  • https://www.mathnet.ru/eng/sm/v209/i2/p102
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:535
    Russian version PDF:50
    English version PDF:9
    References:65
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024