|
This article is cited in 5 scientific papers (total in 5 papers)
The growth of entire Dirichlet series in terms of generalized orders
T. Ya. Hlovaa, P. V. Filevychb a Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, NAS Ukraine, L'vov, Ukraine
b Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Abstract:
Let $\alpha$ be a continuous function which increases to $+\infty$ on an infinite interval of the form $[x_0,+\infty)$. A necessary and sufficient condition is found on a sequence $(\lambda_n)_{n=0}^\infty$ increasing to $+\infty$ which ensures that for each Dirichlet series of the form $F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n}$, $s=\sigma+it$, which is absolutely convergent in $\mathbb{C}$ the following relation holds:
$$
\varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln M(\sigma,F))}{\sigma}=\varlimsup_{\sigma\to+\infty}\frac{\alpha(\ln\mu(\sigma,F))}{\sigma},
$$
where $M(\sigma,F)=\sup\{|F(s)|\colon \operatorname{Re} s=\sigma\}$ and ${\mu(\sigma,F)=\max\{|a_n|e^{\sigma\lambda_n}\colon n\geqslant 0\}}$ are the maximum modulus and maximum term of the series, respectively.
Bibliography: 10 titles.
Keywords:
entire Dirichlet series, maximum modulus, maximum term, generalized order.
Received: 06.12.2015 and 11.10.2017
Citation:
T. Ya. Hlova, P. V. Filevych, “The growth of entire Dirichlet series in terms of generalized orders”, Sb. Math., 209:2 (2018), 241–257
Linking options:
https://www.mathnet.ru/eng/sm8644https://doi.org/10.1070/SM8644 https://www.mathnet.ru/eng/sm/v209/i2/p102
|
|