Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 3, Pages 313–334
DOI: https://doi.org/10.1070/SM8632
(Mi sm8632)
 

This article is cited in 12 scientific papers (total in 12 papers)

Convergence of ray sequences of Frobenius-Padé approximants

A. I. Aptekareva, A. I. Bogolyubskiib, M. Yattselevc

a Federal Research Centre Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
b Russian National Research Medical University named after N. I. Pirogov, Moscow
c Department of Mathematical Sciences, Indiana University – Purdue University Indianapolis, Indianapolis, IN, USA
References:
Abstract: Let $\widehat\sigma$ be a Cauchy transform of a possibly complex-valued Borel measure $\sigma$ and $\{p_n\}$ a system of orthonormal polynomials with respect to a measure $\mu$, where $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$. An $(m,n)$th Frobenius-Padé approximant to $\widehat\sigma$ is a rational function $P/Q$, $\deg(P)\leq m$, $\deg(Q)\leq n$, such that the first $m+n+1$ Fourier coefficients of the remainder function $Q\widehat\sigma-P$ vanish when the form is developed into a series with respect to the polynomials $p_n$. We investigate the convergence of the Frobenius-Padé approximants to $\widehat\sigma$ along ray sequences $n/(n+m+1)\to c>0$, $n-1\leq m$, when $\mu$ and $\sigma$ are supported on intervals of the real line and their Radon-Nikodym derivatives with respect to the arcsine distribution of the corresponding interval are holomorphic functions.
Bibliography: 30 titles.
Keywords: Frobenius-Padé approximants, linear Padé-Chebyshev approximants, Padé approximants of orthogonal expansions, orthogonality, Markov-type functions, Riemann-Hilbert matrix problem.
Funding agency Grant number
Russian Science Foundation 14-21-00025
Russian Foundation for Basic Research 14-01-00604-a
17-01-00614-a
Simons Foundation #354538
A. I. Aptekarev's research was supported by the Russian Science Foundation (grant no. 14-21-00025). A. I. Bogolyubskii's research was supported by the Russian Foundation for Basic Research (grant nos. 14-01-00604_а and 17-01-00614_a). M. L. Yattselev's research was supported by the Simons Foundation (grant #354538).
Received: 09.11.2015 and 26.09.2016
Russian version:
Matematicheskii Sbornik, 2017, Volume 208, Number 3, Pages 4–27
DOI: https://doi.org/10.4213/sm8632
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 41A20, 41A21
Language: English
Original paper language: Russian
Citation: A. I. Aptekarev, A. I. Bogolyubskii, M. Yattselev, “Convergence of ray sequences of Frobenius-Padé approximants”, Mat. Sb., 208:3 (2017), 4–27; Sb. Math., 208:3 (2017), 313–334
Citation in format AMSBIB
\Bibitem{AptBogYat17}
\by A.~I.~Aptekarev, A.~I.~Bogolyubskii, M.~Yattselev
\paper Convergence of ray sequences of Frobenius-Pad\'e approximants
\jour Mat. Sb.
\yr 2017
\vol 208
\issue 3
\pages 4--27
\mathnet{http://mi.mathnet.ru/sm8632}
\crossref{https://doi.org/10.4213/sm8632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3629074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208..313A}
\elib{https://elibrary.ru/item.asp?id=28405168}
\transl
\jour Sb. Math.
\yr 2017
\vol 208
\issue 3
\pages 313--334
\crossref{https://doi.org/10.1070/SM8632}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401851300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020137720}
Linking options:
  • https://www.mathnet.ru/eng/sm8632
  • https://doi.org/10.1070/SM8632
  • https://www.mathnet.ru/eng/sm/v208/i3/p4
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:709
    Russian version PDF:71
    English version PDF:19
    References:66
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024