Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 11, Pages 1557–1574
DOI: https://doi.org/10.1070/SM2004v195n11ABEH000857
(Mi sm857)
 

An analogue of Wagner's theorem for decompositions of matrix algebras

D. N. Ivanov

Tver State University
References:
Abstract: Wagner's celebrated theorem states that a finite affine plane whose collineation group is transitive on lines is a translation plane. The notion of an orthogonal decomposition (OD) of a classically semisimple associative algebra introduced by the author allows one to draw an analogy between finite affine planes of order $n$ and ODs of the matrix algebra $M_n(\mathbb C)$ into a sum of subalgebras conjugate to the diagonal subalgebra. These ODs are called WP-decompositions and are equivalent to the well-known ODs of simple Lie algebras of type $A_{n-1}$ into a sum of Cartan subalgebras. In this paper we give a detailed and improved proof of the analogue of Wagner's theorem for WP-decompositions of the matrix algebra of odd non-square order an outline of which was earlier published in a short note in “Russian Math. Surveys” in 1994. In addition, in the framework of the theory of ODs of associative algebras, based on the method of idempotent bases, we obtain an elementary proof of the well-known Kostrikin–Tiep theorem on irreducible ODs of Lie algebras of type $A_{n-1}$ in the case where $n$ is a prime-power.
Received: 28.10.2003
Bibliographic databases:
UDC: 512.55
MSC: Primary 16S50; Secondary 17B20, 51A40
Language: English
Original paper language: Russian
Citation: D. N. Ivanov, “An analogue of Wagner's theorem for decompositions of matrix algebras”, Sb. Math., 195:11 (2004), 1557–1574
Citation in format AMSBIB
\Bibitem{Iva04}
\by D.~N.~Ivanov
\paper An analogue of Wagner's theorem for decompositions of matrix algebras
\jour Sb. Math.
\yr 2004
\vol 195
\issue 11
\pages 1557--1574
\mathnet{http://mi.mathnet.ru//eng/sm857}
\crossref{https://doi.org/10.1070/SM2004v195n11ABEH000857}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2127458}
\zmath{https://zbmath.org/?q=an:1109.16026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228585900002}
\elib{https://elibrary.ru/item.asp?id=14365847}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17744383174}
Linking options:
  • https://www.mathnet.ru/eng/sm857
  • https://doi.org/10.1070/SM2004v195n11ABEH000857
  • https://www.mathnet.ru/eng/sm/v195/i11/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024