Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 11, Pages 1564–1609
DOI: https://doi.org/10.1070/SM2015v206n11ABEH004505
(Mi sm8522)
 

This article is cited in 9 scientific papers (total in 9 papers)

The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces

A. A. Gaifullin

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: A flexible polyhedron in an $n$-dimensional space $\mathbb{X}^n$ of constant curvature is a polyhedron with rigid $(n-1)$-dimensional faces and hinges at $(n-2)$-dimensional faces. The Bellows conjecture claims that, for $n\geqslant 3$, the volume of any flexible polyhedron is constant during the flexion. The Bellows conjecture in Euclidean spaces $\mathbb{E}^n$ was proved by Sabitov for $n=3$ (1996) and by the author for $n\geqslant 4$ (2012). Counterexamples to the Bellows conjecture in open hemispheres $\mathbb{S}^n_+$ were constructed by Alexandrov for $n=3$ (1997) and by the author for $n\geqslant 4$ (2015). In this paper we prove the Bellows conjecture for bounded flexible polyhedra in odd-dimensional Lobachevsky spaces. The proof is based on the study of the analytic continuation of the volume of a simplex in Lobachevsky space considered as a function of the hyperbolic cosines of its edge lengths.
Bibliography: 37 titles.
Keywords: flexible polyhedron, Bellows conjecture, Lobachevsky space, Schläfli's formula, analytic continuation.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation (grant no. 14-50-00005).
Received: 26.03.2015 and 04.08.2015
Bibliographic databases:
Document Type: Article
UDC: 514.132+517.554
MSC: 51M10, 52B11
Language: English
Original paper language: Russian
Citation: A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609
Citation in format AMSBIB
\Bibitem{Gai15}
\by A.~A.~Gaifullin
\paper The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces
\jour Sb. Math.
\yr 2015
\vol 206
\issue 11
\pages 1564--1609
\mathnet{http://mi.mathnet.ru//eng/sm8522}
\crossref{https://doi.org/10.1070/SM2015v206n11ABEH004505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438569}
\zmath{https://zbmath.org/?q=an:1370.52068}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1564G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368476800003}
\elib{https://elibrary.ru/item.asp?id=24850600}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84955484864}
Linking options:
  • https://www.mathnet.ru/eng/sm8522
  • https://doi.org/10.1070/SM2015v206n11ABEH004505
  • https://www.mathnet.ru/eng/sm/v206/i11/p61
  • Related presentations:
    This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:991
    Russian version PDF:202
    English version PDF:14
    References:54
    First page:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024