Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 3, Pages 331–341
DOI: https://doi.org/10.1070/SM8500
(Mi sm8500)
 

This article is cited in 18 scientific papers (total in 18 papers)

Approximation by simple partial fractions with constraints on the poles. II

P. A. Borodin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: It is shown that if a compact set $K$ not separating the plane $\mathbb C$ lies in the union $\widehat{E}\setminus E$ of the bounded components of the complement of another compact set $E$, then the simple partial fractions (the logarithmic derivatives of polynomials) with poles in $E$ are dense in the space $AC(K)$ of functions that are continuous on $K$ and analytic in its interior. It is also shown that if a compact set $K$ with connected complement lies in the complement $\mathbb C\setminus\overline{D}$ of the closure of a doubly connected domain $D\subset \overline{\mathbb C}$ with bounded connected components of the boundary $E^+$ and $E^-$, then the differences $r_1-r_2$ of the simple partial fractions such that $r_1$ has its poles in $E^+$ and $r_2$ has its poles in $E^-$ are dense in the space $AC(K)$.
Bibliography: 9 titles.
Keywords: simple partial fractions, uniform approximation, restriction on the poles, neutral distribution, condenser.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00510
14-01-91158
15-01-08335
Dynasty Foundation
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant nos. 14-01-00510, 14-01-91158, and 15-01-08335) and the Dmitry Zimin Dynasty Foundation.
Received: 02.03.2015
Bibliographic databases:
Document Type: Article
UDC: 517.538.5
MSC: 41A20, 30E10
Language: English
Original paper language: Russian
Citation: P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles. II”, Sb. Math., 207:3 (2016), 331–341
Citation in format AMSBIB
\Bibitem{Bor16}
\by P.~A.~Borodin
\paper Approximation by simple partial fractions with constraints on the poles.~II
\jour Sb. Math.
\yr 2016
\vol 207
\issue 3
\pages 331--341
\mathnet{http://mi.mathnet.ru//eng/sm8500}
\crossref{https://doi.org/10.1070/SM8500}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507482}
\zmath{https://zbmath.org/?q=an:1354.30025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..331B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376442700002}
\elib{https://elibrary.ru/item.asp?id=25707816}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971310308}
Linking options:
  • https://www.mathnet.ru/eng/sm8500
  • https://doi.org/10.1070/SM8500
  • https://www.mathnet.ru/eng/sm/v207/i3/p19
    Cycle of papers
    This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:753
    Russian version PDF:196
    English version PDF:25
    References:105
    First page:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024