Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 5, Pages 652–677
DOI: https://doi.org/10.1070/SM8473
(Mi sm8473)
 

This article is cited in 19 scientific papers (total in 19 papers)

Asymptotic study of the maximum number of edges in a uniform hypergraph with one forbidden intersection

A. V. Bobua, A. E. Kupriyanova, A. M. Raigorodskiiabc

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Buryat State University, Institute for Mathematics and Informatics, Ulan-Ude
c Department of Innovations and High Technology, Moscow Institute of Physics and Technology
References:
Abstract: The object of this research is the quantity $m(n,k,t)$ defined as the maximum number of edges in a $k$-uniform hypergraph possessing the property that no two edges intersect in $t$ vertices. The case when $k\sim k'n$ and $t \sim t'n$ as $n \to \infty$, and $k' \in (0,1)$, $t' \in (0,k')$ are fixed constants is considered in full detail. In the case when $2t < k$ the asymptotic accuracy of the Frankl-Wilson upper estimate is established; in the case when $2t \geqslant k$ new lower estimates for the quantity $m(n,k,t)$ are proposed. These new estimates are employed to derive upper estimates for the quantity $A(n,2\delta,\omega)$, which is widely used in coding theory and is defined as the maximum number of bit strings of length $n$ and weight $\omega$ having Hamming distance at least $2\delta$ from one another.
Bibliography: 38 titles.
Keywords: hypergraphs with one forbidden intersection of edges, Frankl-Wilson Theorem, constant-weight error-correcting codes, Nelson-Hadwiger problem.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03530
Ministry of Education and Science of the Russian Federation МД-6008.2015.1
НШ-2964.2014.1
This work was supported by the Russian Foundation for Basic Research (grant no. 15-01-03530) and by the Ministry of Education and Science of the Russian Federation (grant nos. МД-6008.2015.1 and НШ-2964.2014.1).
Received: 12.01.2015 and 18.01.2016
Bibliographic databases:
Document Type: Article
UDC: 519.112.74+519.176
MSC: Primary 05C15, 05C35; Secondary 63R10, 90C27
Language: English
Original paper language: Russian
Citation: A. V. Bobu, A. E. Kupriyanov, A. M. Raigorodskii, “Asymptotic study of the maximum number of edges in a uniform hypergraph with one forbidden intersection”, Sb. Math., 207:5 (2016), 652–677
Citation in format AMSBIB
\Bibitem{BobKupRai16}
\by A.~V.~Bobu, A.~E.~Kupriyanov, A.~M.~Raigorodskii
\paper Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection
\jour Sb. Math.
\yr 2016
\vol 207
\issue 5
\pages 652--677
\mathnet{http://mi.mathnet.ru//eng/sm8473}
\crossref{https://doi.org/10.1070/SM8473}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507497}
\zmath{https://zbmath.org/?q=an:1345.05024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..652B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380765400002}
\elib{https://elibrary.ru/item.asp?id=26414394}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979675840}
Linking options:
  • https://www.mathnet.ru/eng/sm8473
  • https://doi.org/10.1070/SM8473
  • https://www.mathnet.ru/eng/sm/v207/i5/p17
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:714
    Russian version PDF:202
    English version PDF:32
    References:75
    First page:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024