Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 4, Pages 590–609
DOI: https://doi.org/10.1070/SM8469
(Mi sm8469)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the derivatives of unimodular polynomials

Paul Nevaia, Tamás Erdélyib

a Upper Arlington (Columbus), Ohio, USA
b Department of Mathematics, Texas A&M University, College Station, TX, USA
References:
Abstract: Let $D$ be the open unit disk of the complex plane; its boundary, the unit circle of the complex plane, is denoted by $\partial D$. Let $\mathscr P_n^c$ denote the set of all algebraic polynomials of degree at most $n$ with complex coefficients. For $\lambda \geqslant 0$, let
$$ \mathscr K_n^\lambda \stackrel{\mathrm{def}}{=}\biggl\{P_n:P_n(z)=\sum_{k=0}^n{a_k k^\lambda z^k}, \, a_k \in\mathbb C,\,|a_k| = 1 \biggr\} \subset\mathscr P_n^c. $$
The class $\mathscr K_n^0$ is often called the collection of all (complex) unimodular polynomials of degree $n$. Given a sequence $(\varepsilon_n)$ of positive numbers tending to $0$, we say that a sequence $(P_n)$ of polynomials $P_n\in\mathscr K_n^\lambda$ is $\{\lambda, (\varepsilon_n)\}$-ultraflat if
$$ (1-\varepsilon_n)\frac{n^{\lambda+1/2}}{\sqrt{2\lambda+1}}\leqslant|P_n(z)|\leqslant(1+\varepsilon_n)\frac{n^{\lambda +1/2}}{\sqrt{2\lambda +1}}, \qquad z \in \partial D,\quad n\in\mathbb N_0. $$
Although we do not know, in general, whether or not $\{\lambda, (\varepsilon_n)\}$-ultraflat sequences of polynomials $P_n\in\mathscr K_n^\lambda$ exist for each fixed $\lambda>0$, we make an effort to prove various interesting properties of them. These allow us to conclude that there are no sequences $(P_n)$ of either conjugate, or plain, or skew reciprocal unimodular polynomials $P_n\in\mathscr K_n^0$ such that $(Q_n)$ with $Q_n(z)\stackrel{\mathrm{def}}{=} zP_n'(z)+1$ is a $\{1,(\varepsilon_n)\}$-ultraflat sequence of polynomials.
Bibliography: 18 titles.
Keywords: unimodular polynomial, ultraflat polynomial, angular derivative.
Received: 08.01.2015 and 09.09.2015
Bibliographic databases:
Document Type: Article
UDC: 517.518.862
MSC: 41A17
Language: English
Original paper language: Russian
Citation: Paul Nevai, Tamás Erdélyi, “On the derivatives of unimodular polynomials”, Sb. Math., 207:4 (2016), 590–609
Citation in format AMSBIB
\Bibitem{NevErd16}
\by Paul Nevai, Tam{\' a}s Erd{\'e}lyi
\paper On the derivatives of unimodular polynomials
\jour Sb. Math.
\yr 2016
\vol 207
\issue 4
\pages 590--609
\mathnet{http://mi.mathnet.ru//eng/sm8469}
\crossref{https://doi.org/10.1070/SM8469}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507494}
\zmath{https://zbmath.org/?q=an:1351.41008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..590N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378483100006}
\elib{https://elibrary.ru/item.asp?id=25707828}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84976385397}
Linking options:
  • https://www.mathnet.ru/eng/sm8469
  • https://doi.org/10.1070/SM8469
  • https://www.mathnet.ru/eng/sm/v207/i4/p123
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024