Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 2, Pages 226–237
DOI: https://doi.org/10.1070/SM8447
(Mi sm8447)
 

This article is cited in 5 scientific papers (total in 5 papers)

The Post-Gluskin-Hosszú theorem for finite $n$-quasigroups and self-invariant families of permutations

F. M. Malyshev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We study finite $n$-quasigroups $(n\geqslant3)$ with the following property of additional invertibility: if the quasigroup operation gives the same results on some two tuples of $n$ arguments with the same first components, then the tuples of the other $n-1$ components effect the same left translations. We prove an analogue of the Post-Gluskin-Hosszú theorem for such $n$-quasigroups. This has been proved previously, but only in the associative case. The theorem reduces the operation of the $n$-quasigroup to a group operation. The main tool used in the proof is a two-parameter self-invariant family of permutations on an arbitrary finite set. This is introduced and studied in the paper.
Bibliography: 13 titles.
Keywords: $n$-quasigroup, associativity, $n$-ary group, automorphism, Latin hypercube.
Received: 11.11.2014 and 20.05.2015
Russian version:
Matematicheskii Sbornik, 2016, Volume 207, Number 2, Pages 81–92
DOI: https://doi.org/10.4213/sm8447
Bibliographic databases:
Document Type: Article
UDC: 512.548.74
MSC: Primary 20N15; Secondary 20N05
Language: English
Original paper language: Russian
Citation: F. M. Malyshev, “The Post-Gluskin-Hosszú theorem for finite $n$-quasigroups and self-invariant families of permutations”, Mat. Sb., 207:2 (2016), 81–92; Sb. Math., 207:2 (2016), 226–237
Citation in format AMSBIB
\Bibitem{Mal16}
\by F.~M.~Malyshev
\paper The Post-Gluskin-Hossz\'u theorem for finite $n$-quasigroups and self-invariant families of permutations
\jour Mat. Sb.
\yr 2016
\vol 207
\issue 2
\pages 81--92
\mathnet{http://mi.mathnet.ru/sm8447}
\crossref{https://doi.org/10.4213/sm8447}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3462732}
\zmath{https://zbmath.org/?q=an:06594446}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..226M}
\elib{https://elibrary.ru/item.asp?id=25707810}
\transl
\jour Sb. Math.
\yr 2016
\vol 207
\issue 2
\pages 226--237
\crossref{https://doi.org/10.1070/SM8447}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000375263200003}
\elib{https://elibrary.ru/item.asp?id=27152494}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84965011485}
Linking options:
  • https://www.mathnet.ru/eng/sm8447
  • https://doi.org/10.1070/SM8447
  • https://www.mathnet.ru/eng/sm/v207/i2/p81
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:505
    Russian version PDF:144
    English version PDF:19
    References:117
    First page:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024