Processing math: 100%
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 8, Pages 1030–1048
DOI: https://doi.org/10.1070/SM2015v206n08ABEH004488
(Mi sm8436)
 

This article is cited in 10 scientific papers (total in 10 papers)

Estimates for integral norms of polynomials on spaces with convex measures

L. M. Arutyunyan, E. D. Kosov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We show that measurable polynomials of degree d are integrable to every positive power and all their Lp-norms are equivalent. We also prove a zero-one law for level sets of measurable polynomials and for sets of convergence of measurable polynomials of fixed degree on spaces with convex measures. We obtain an estimate for the L1-norm of continuous polynomials in terms of the L1-norm of their restriction to any set of positive measure.
Bibliography: 19 titles.
Keywords: convex measures, logarithmically convex measures, measurable polynomials.
Funding agency Grant number
Russian Science Foundation 14-11-00196
This work was supported by the Russian Science Foundation (grant no. 14-11-00196).
Received: 30.10.2014 and 02.12.2014
Bibliographic databases:
Document Type: Article
UDC: 519.21
MSC: Primary 28A20; Secondary 28C20, 46G12
Language: English
Original paper language: Russian
Citation: L. M. Arutyunyan, E. D. Kosov, “Estimates for integral norms of polynomials on spaces with convex measures”, Sb. Math., 206:8 (2015), 1030–1048
Citation in format AMSBIB
\Bibitem{AruKos15}
\by L.~M.~Arutyunyan, E.~D.~Kosov
\paper Estimates for integral norms of polynomials on spaces with convex measures
\jour Sb. Math.
\yr 2015
\vol 206
\issue 8
\pages 1030--1048
\mathnet{http://mi.mathnet.ru/eng/sm8436}
\crossref{https://doi.org/10.1070/SM2015v206n08ABEH004488}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438588}
\zmath{https://zbmath.org/?q=an:1331.28029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1030A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000365315600001}
\elib{https://elibrary.ru/item.asp?id=24073834}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944937791}
Linking options:
  • https://www.mathnet.ru/eng/sm8436
  • https://doi.org/10.1070/SM2015v206n08ABEH004488
  • https://www.mathnet.ru/eng/sm/v206/i8/p3
  • This publication is cited in the following 10 articles:
    1. Konstantin A. Afonin, Vladimir I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, CPAA, 22:2 (2023), 597  crossref
    2. V. I. Bogachev, “Distributions of polynomials in many variables and Nikolskii-Besov spaces”, Real Anal. Exch., 44:1 (2019), 49–64  crossref  mathscinet  zmath  isi
    3. V. I. Bogachev, E. D. Kosov, G. I. Zelenov, “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy-Landau-Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432  crossref  mathscinet  zmath  isi  scopus
    4. E. D. Kosov, “Fractional smoothness of images of logarithmically concave measures under polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406  crossref  mathscinet  zmath  isi
    5. L. M. Arutyunyan, E. D. Kosov, “Deviation of polynomials from their expectations and isoperimetry”, Bernoulli, 24:3 (2018), 2043–2063  crossref  mathscinet  zmath  isi  scopus
    6. Egor D. Kosov, “Fractional smoothness of images of logarithmically concave measures under polynomials”, Journal of Mathematical Analysis and Applications, 462:1 (2018), 390  crossref
    7. V. I. Bogachev, O. G. Smolyanov, Topological vector spaces and their applications, Springer Monographs in Mathematics, Springer, Cham, 2017, x+456 pp.  crossref  mathscinet  zmath  isi
    8. Georgii I. Zelenov, “On distances between distributions of polynomials”, Theory Stoch. Process., 22(38):2 (2017), 79–85  mathnet  mathscinet  zmath
    9. V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. L. M. Arutyunyan, “Absolute Continuity of Distributions of Polynomials on Spaces with Log-Concave Measures”, Math. Notes, 101:1 (2017), 31–38  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:690
    Russian version PDF:201
    English version PDF:93
    References:75
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025