Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 12, Pages 1683–1695
DOI: https://doi.org/10.1070/SM2014v205n12ABEH004434
(Mi sm8403)
 

This article is cited in 8 scientific papers (total in 8 papers)

Existence of standard models of conic fibrations over non-algebraically-closed fields

A. A. Avilov

National Research University "Higher School of Economics", Moscow
References:
Abstract: We prove an analogue of Sarkisov's theorem on the existence of a standard model of a conic fibration over an algebraically closed field of characteristic different from two for three-dimensional conic fibrations over an arbitrary field of characteristic zero with an action of a finite group.
Bibliography: 16 titles.
Keywords: conic fibration, Sarkisov link, minimal model programme, birational model.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation МК-6223.2012.1
МК-1192.2012.1
Russian Foundation for Basic Research 11-01-00336
12-01-31012
Received: 13.07.2014
Bibliographic databases:
Document Type: Article
UDC: 512.765
MSC: Primary 14J30; Secondary 14E30, 14J10
Language: English
Original paper language: Russian
Citation: A. A. Avilov, “Existence of standard models of conic fibrations over non-algebraically-closed fields”, Sb. Math., 205:12 (2014), 1683–1695
Citation in format AMSBIB
\Bibitem{Avi14}
\by A.~A.~Avilov
\paper Existence of standard models of conic fibrations over non-algebraically-closed fields
\jour Sb. Math.
\yr 2014
\vol 205
\issue 12
\pages 1683--1695
\mathnet{http://mi.mathnet.ru//eng/sm8403}
\crossref{https://doi.org/10.1070/SM2014v205n12ABEH004434}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3309386}
\zmath{https://zbmath.org/?q=an:06417743}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1683A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349436300001}
\elib{https://elibrary.ru/item.asp?id=22834497}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923196990}
Linking options:
  • https://www.mathnet.ru/eng/sm8403
  • https://doi.org/10.1070/SM2014v205n12ABEH004434
  • https://www.mathnet.ru/eng/sm/v205/i12/p3
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:552
    Russian version PDF:204
    English version PDF:21
    References:65
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024