Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 12, Pages 1771–1796
DOI: https://doi.org/10.1070/SM2015v206n12ABEH004513
(Mi sm8367)
 

This article is cited in 1 scientific paper (total in 1 paper)

A refinement of Gol'dberg's theorem on estimating the type with respect to a proximate order of an entire function of integer order

F. S. Myshakov, A. Yu. Popov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A best possible second term is found in Gol'dberg's theorem on an asymptotic upper estimate for the logarithm of the maximum modulus of an entire function of integer order.
Bibliography: 9 titles.
Keywords: entire function of integer order, type of an entire function with respect to a proximate order, slowly varying function, asymptotic estimate.
Received: 27.03.2014 and 04.06.2015
Bibliographic databases:
Document Type: Article
UDC: 517.547.22
MSC: 30D20
Language: English
Original paper language: Russian
Citation: F. S. Myshakov, A. Yu. Popov, “A refinement of Gol'dberg's theorem on estimating the type with respect to a proximate order of an entire function of integer order”, Sb. Math., 206:12 (2015), 1771–1796
Citation in format AMSBIB
\Bibitem{MysPop15}
\by F.~S.~Myshakov, A.~Yu.~Popov
\paper A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order
\jour Sb. Math.
\yr 2015
\vol 206
\issue 12
\pages 1771--1796
\mathnet{http://mi.mathnet.ru//eng/sm8367}
\crossref{https://doi.org/10.1070/SM2015v206n12ABEH004513}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438577}
\zmath{https://zbmath.org/?q=an:1367.30015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1771M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000370791500006}
\elib{https://elibrary.ru/item.asp?id=24850642}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959903857}
Linking options:
  • https://www.mathnet.ru/eng/sm8367
  • https://doi.org/10.1070/SM2015v206n12ABEH004513
  • https://www.mathnet.ru/eng/sm/v206/i12/p119
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024