Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 5, Pages 650–675
DOI: https://doi.org/10.1070/SM2015v206n05ABEH004474
(Mi sm8331)
 

This article is cited in 2 scientific papers (total in 2 papers)

Multidimensional smooth loops with universal elasticity

K. R. Dzhukashev, A. M. Shelekhov

Tver State University, Department of Mathematics
References:
Abstract: Let $\widetilde E$ be a universal (isotopically invariant) identity that is derived from the elasticity identity $E\colon (xy)x=x(yx)$. One of the authors has previously shown that a) each local loop of dimension $r$ with identity $\widetilde E$ (briefly, a loop $\widetilde E$) is a smooth middle Bol loop of dimension $r$; b) smooth two-dimensional loops $\widetilde E$ are Lie groups; c) up to isotopy, there exist only two three-dimensional loops $\widetilde E$: the loops $E_1$ and $E_2$. In this paper, the loops $E_1$ and $E_2$ are extended to the multidimensional case. The fact that each smooth loop $\widetilde E$ of dimension $r$ corresponds to a unique multidimensional three-web on a manifold of dimension $2r$ is key to our work. In addition, the class of loops under investigation is characterized by the fact that the torsion tensor of the corresponding web has rank 1 (that is, the algebra generated by this tensor has a one-dimensional derived algebra). This enables us to express the differential equations of the problem in an invariant form. The system of equations thus obtained was found to be amenable to integration in the most general case, and the equations of the required loops have been obtained in local coordinates.
Bibliography: 17 titles.
Keywords: loop, elasticity identity, universal identity, Bol three-web, elastic three-web.
Received: 20.01.2014 and 04.08.2014
Bibliographic databases:
Document Type: Article
UDC: 514.763.7+512.548.77
MSC: 53A60
Language: English
Original paper language: Russian
Citation: K. R. Dzhukashev, A. M. Shelekhov, “Multidimensional smooth loops with universal elasticity”, Sb. Math., 206:5 (2015), 650–675
Citation in format AMSBIB
\Bibitem{DzhShe15}
\by K.~R.~Dzhukashev, A.~M.~Shelekhov
\paper Multidimensional smooth loops with universal elasticity
\jour Sb. Math.
\yr 2015
\vol 206
\issue 5
\pages 650--675
\mathnet{http://mi.mathnet.ru//eng/sm8331}
\crossref{https://doi.org/10.1070/SM2015v206n05ABEH004474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3354990}
\zmath{https://zbmath.org/?q=an:1328.53017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206..650D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358449000002}
\elib{https://elibrary.ru/item.asp?id=23421648}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938149679}
Linking options:
  • https://www.mathnet.ru/eng/sm8331
  • https://doi.org/10.1070/SM2015v206n05ABEH004474
  • https://www.mathnet.ru/eng/sm/v206/i5/p35
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:404
    Russian version PDF:161
    English version PDF:13
    References:35
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024