Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 7, Pages 983–1003
DOI: https://doi.org/10.1070/SM2014v205n07ABEH004406
(Mi sm8303)
 

This article is cited in 4 scientific papers (total in 4 papers)

The convergence of double Fourier-Haar series over homothetic copies of sets

G. G. Oniani

Akaki Tsereteli State University, Kutaisi
References:
Abstract: The paper is concerned with the convergence of double Fourier-Haar series with partial sums taken over homothetic copies of a given bounded set $W\subset \mathbb{R}_+^2$ containing the intersection of some neighbourhood of the origin with $\mathbb{R}_+^2$. It is proved that for a set $W$ from a fairly broad class (in particular, for convex $W$) there are two alternatives: either the Fourier-Haar series of an arbitrary function $f\in L([0,1]^2)$ converges almost everywhere or $L\ln^+L([0,1]^2)$ is the best integral class in which the double Fourier-Haar series converges almost everywhere. Furthermore, a characteristic property is obtained, which distinguishes which of the two alternatives is realized for a given $W$.
Bibliography: 12 titles.
Keywords: Fourier-Haar series, double series, lacunary series, convergence.
Funding agency Grant number
Shota Rustaveli National Science Foundation 31/48
Received: 15.11.2013
Russian version:
Matematicheskii Sbornik, 2014, Volume 205, Number 7, Pages 73–94
DOI: https://doi.org/10.4213/sm8303
Bibliographic databases:
Document Type: Article
UDC: 517.52
MSC: 42B05, 42B08
Language: English
Original paper language: Russian
Citation: G. G. Oniani, “The convergence of double Fourier-Haar series over homothetic copies of sets”, Mat. Sb., 205:7 (2014), 73–94; Sb. Math., 205:7 (2014), 983–1003
Citation in format AMSBIB
\Bibitem{Oni14}
\by G.~G.~Oniani
\paper The convergence of double Fourier-Haar series over homothetic copies of sets
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 7
\pages 73--94
\mathnet{http://mi.mathnet.ru/sm8303}
\crossref{https://doi.org/10.4213/sm8303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3242646}
\zmath{https://zbmath.org/?q=an:06381826}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..983O}
\elib{https://elibrary.ru/item.asp?id=21826636}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 7
\pages 983--1003
\crossref{https://doi.org/10.1070/SM2014v205n07ABEH004406}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344080400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908495416}
Linking options:
  • https://www.mathnet.ru/eng/sm8303
  • https://doi.org/10.1070/SM2014v205n07ABEH004406
  • https://www.mathnet.ru/eng/sm/v205/i7/p73
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:416
    Russian version PDF:146
    English version PDF:5
    References:44
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024