Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 6, Pages 819–831
DOI: https://doi.org/10.1070/SM2004v195n06ABEH000826
(Mi sm826)
 

This article is cited in 4 scientific papers (total in 4 papers)

Hessian of the solution of the Hamilton–Jacobi equation in the theory of extremal problems

M. I. Zelikin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: An optimal control problem with separated conditions at the end-points is studied. It is assumed that there exists on the manifold of left end-points (as well as on the manifold of right end-points) a field of extremals containing the fixed extremal. A criterion describing necessary and sufficient conditions of optimality in terms of these two fields is proved. The sufficient condition is the positive-definiteness of the difference of the solutions of the corresponding matrix Riccati's equations and the necessary one is its non-negativity. The key part in the proof of the criterion is played by a formula relating the solution of Riccati's equation and the Hessian of the Bellman function.
Received: 24.12.2003
Bibliographic databases:
UDC: 517.977
MSC: Primary 49K15, 93C15; Secondary 49L20
Language: English
Original paper language: Russian
Citation: M. I. Zelikin, “Hessian of the solution of the Hamilton–Jacobi equation in the theory of extremal problems”, Sb. Math., 195:6 (2004), 819–831
Citation in format AMSBIB
\Bibitem{Zel04}
\by M.~I.~Zelikin
\paper Hessian of the solution of the Hamilton--Jacobi equation in the theory of~extremal problems
\jour Sb. Math.
\yr 2004
\vol 195
\issue 6
\pages 819--831
\mathnet{http://mi.mathnet.ru//eng/sm826}
\crossref{https://doi.org/10.1070/SM2004v195n06ABEH000826}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2091580}
\zmath{https://zbmath.org/?q=an:1059.49030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224059000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4644291074}
Linking options:
  • https://www.mathnet.ru/eng/sm826
  • https://doi.org/10.1070/SM2004v195n06ABEH000826
  • https://www.mathnet.ru/eng/sm/v195/i6/p57
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:626
    Russian version PDF:263
    English version PDF:22
    References:53
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024