Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 1, Pages 7–44
DOI: https://doi.org/10.1070/SM2014v205n01ABEH004365
(Mi sm8243)
 

This article is cited in 4 scientific papers (total in 4 papers)

Solutions to higher-order anisotropic parabolic equations in unbounded domains

L. M. Kozhevnikova, A. A. Leont'ev

Sterlitamak branch of Bashkir State University
References:
Abstract: The paper is devoted to a certain class of doubly nonlinear higher-order anisotropic parabolic equations. Using Galerkin approximations it is proved that the first mixed problem with homogeneous Dirichlet boundary condition has a strong solution in the cylinder $D=(0,\infty)\times\Omega$, where $\Omega\subset\mathbb R^n$, $n\geqslant 3$, is an unbounded domain. When the initial function has compact support the highest possible rate of decay of this solution as $t\to \infty$ is found. An upper estimate characterizing the decay of the solution is established, which is close to the lower estimate if the domain is sufficiently ‘narrow’. The same authors have previously obtained results of this type for second order anisotropic parabolic equations.
Bibliography: 29 titles.
Keywords: higher-order anisotropic equation, parabolic equation with double nonlinearity, existence of a solution, rate of decay of a solution.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00081-a
Received: 28.04.2013 and 07.11.2013
Russian version:
Matematicheskii Sbornik, 2014, Volume 205, Number 1, Pages 9–46
DOI: https://doi.org/10.4213/sm8243
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
MSC: 35K35
Language: English
Original paper language: Russian
Citation: L. M. Kozhevnikova, A. A. Leont'ev, “Solutions to higher-order anisotropic parabolic equations in unbounded domains”, Mat. Sb., 205:1 (2014), 9–46; Sb. Math., 205:1 (2014), 7–44
Citation in format AMSBIB
\Bibitem{KozLeo14}
\by L.~M.~Kozhevnikova, A.~A.~Leont'ev
\paper Solutions to higher-order anisotropic parabolic equations in unbounded domains
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 1
\pages 9--46
\mathnet{http://mi.mathnet.ru/sm8243}
\crossref{https://doi.org/10.4213/sm8243}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3185272}
\zmath{https://zbmath.org/?q=an:06351078}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205....7K}
\elib{https://elibrary.ru/item.asp?id=21277057}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 1
\pages 7--44
\crossref{https://doi.org/10.1070/SM2014v205n01ABEH004365}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000333171800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896926290}
Linking options:
  • https://www.mathnet.ru/eng/sm8243
  • https://doi.org/10.1070/SM2014v205n01ABEH004365
  • https://www.mathnet.ru/eng/sm/v205/i1/p9
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:697
    Russian version PDF:200
    English version PDF:14
    References:73
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024