Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 5, Pages 703–721
DOI: https://doi.org/10.1070/SM2014v205n05ABEH004395
(Mi sm8242)
 

This article is cited in 2 scientific papers (total in 2 papers)

Incoherent systems and coverings in finite dimensional Banach spaces

V. N. Temlyakovab

a Steklov Mathematical Institute of the Russian Academy of Sciences
b University of South Carolina
References:
Abstract: We discuss the construction of coverings of the unit ball of a finite dimensional Banach space. There is a well-known technique based on comparing volumes which gives upper and lower bounds on covering numbers. However, this technique does not provide a method for constructing good coverings. Here we study incoherent systems and apply them to construct good coverings. We use the following strategy. First, we build a good covering using balls with a radius close to one. Second, we iterate this construction to obtain a good covering for any radius. We shall concentrate mainly on the first step of this strategy.
Bibliography: 14 titles.
Keywords: incoherent systems, covering of balls, Banach space, modulus of smoothness, explicit constructions.
Funding agency Grant number
National Science Foundation DMS-1160841
Received: 23.04.2013 and 20.11.2013
Russian version:
Matematicheskii Sbornik, 2014, Volume 205, Number 5, Pages 97–116
DOI: https://doi.org/10.4213/sm8242
Bibliographic databases:
Document Type: Article
UDC: 514.174.3+517.982.22
MSC: Primary 52C17; Secondary 05B40
Language: English
Original paper language: Russian
Citation: V. N. Temlyakov, “Incoherent systems and coverings in finite dimensional Banach spaces”, Mat. Sb., 205:5 (2014), 97–116; Sb. Math., 205:5 (2014), 703–721
Citation in format AMSBIB
\Bibitem{Tem14}
\by V.~N.~Temlyakov
\paper Incoherent systems and coverings in finite dimensional Banach spaces
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 5
\pages 97--116
\mathnet{http://mi.mathnet.ru/sm8242}
\crossref{https://doi.org/10.4213/sm8242}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3242634}
\zmath{https://zbmath.org/?q=an:06349848}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..703T}
\elib{https://elibrary.ru/item.asp?id=21826624}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 5
\pages 703--721
\crossref{https://doi.org/10.1070/SM2014v205n05ABEH004395}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344080100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905020329}
Linking options:
  • https://www.mathnet.ru/eng/sm8242
  • https://doi.org/10.1070/SM2014v205n05ABEH004395
  • https://www.mathnet.ru/eng/sm/v205/i5/p97
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:423
    Russian version PDF:163
    English version PDF:24
    References:68
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024