Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 8, Pages 1080–1106
DOI: https://doi.org/10.1070/SM2014v205n08ABEH004411
(Mi sm8236)
 

A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space

V. M. Kaplitskiiab

a Southern Federal University, Rostov-on-Don
b South Mathematical Institute of VSC RAS
References:
Abstract: The function $\Psi(x, y, s)=e^{iy}\Phi(-e^{iy},s,x)$, where $\Phi(z,s,v)$ is Lerch's transcendent, satisfies the following two-dimensional formally self-adjoint second-order hyperbolic differential equation:
$$ L[\Psi]=\frac{\partial^2\Psi}{\partial x\,\partial y}+i(x-1)\frac{\partial\Psi}{\partial x}+\frac{i}{2}\Psi=\lambda\Psi, $$
where $s={1}/{2}+i\lambda$. The corresponding differential expression determines a densely defined symmetric operator (the minimal operator) on the Hilbert space $L_2(\Pi)$, where $\Pi=(0,1)\times(0,2\pi)$. We obtain a description of the domains of definition of some symmetric extensions of the minimal operator. We show that formal solutions of the eigenvalue problem for these symmetric extensions are represented by functional series whose structure resembles that of the Fourier series of $\Psi(x,y,s)$. We discuss sufficient conditions for these formal solutions to be eigenfunctions of the resulting symmetric differential operators. We also demonstrate a close relationship between the spectral properties of these symmetric differential operators and the distribution of the zeros of some special analytic functions analogous to the Riemann zeta function.
Bibliography: 15 titles.
Keywords: Lerch's transcendent, Hilbert space, symmetric operator, eigenfunction.
Received: 04.04.2013 and 17.04.2014
Russian version:
Matematicheskii Sbornik, 2014, Volume 205, Number 8, Pages 13–40
DOI: https://doi.org/10.4213/sm8236
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: English
Original paper language: Russian
Citation: V. M. Kaplitskii, “A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space”, Mat. Sb., 205:8 (2014), 13–40; Sb. Math., 205:8 (2014), 1080–1106
Citation in format AMSBIB
\Bibitem{Kap14}
\by V.~M.~Kaplitskii
\paper A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space
\jour Mat. Sb.
\yr 2014
\vol 205
\issue 8
\pages 13--40
\mathnet{http://mi.mathnet.ru/sm8236}
\crossref{https://doi.org/10.4213/sm8236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3288203}
\zmath{https://zbmath.org/?q=an:06381831}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1080K}
\elib{https://elibrary.ru/item.asp?id=21826642}
\transl
\jour Sb. Math.
\yr 2014
\vol 205
\issue 8
\pages 1080--1106
\crossref{https://doi.org/10.1070/SM2014v205n08ABEH004411}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344080700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908110148}
Linking options:
  • https://www.mathnet.ru/eng/sm8236
  • https://doi.org/10.1070/SM2014v205n08ABEH004411
  • https://www.mathnet.ru/eng/sm/v205/i8/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1301
    Russian version PDF:269
    English version PDF:29
    References:161
    First page:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024