Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 5, Pages 683–725
DOI: https://doi.org/10.1070/SM2013v204n05ABEH004317
(Mi sm8122)
 

This article is cited in 6 scientific papers (total in 6 papers)

The most rapid possible growth of the maximum modulus of a canonical product of noninteger order with a prescribed majorant of the counting function of zeros

A. Yu. Popov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Asymptotically sharp estimates for the logarithm of the maximum modulus of a canonical product are obtained in the case when the counting function of zeros has a prescribed majorant, while the arguments of the zeros can be arbitrary.
Bibliography: 9 titles.
Keywords: entire function of finite order, proximate order, canonical product, maximum modulus of an entire function.
Received: 29.03.2012
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30D15
Language: English
Original paper language: Russian
Citation: A. Yu. Popov, “The most rapid possible growth of the maximum modulus of a canonical product of noninteger order with a prescribed majorant of the counting function of zeros”, Sb. Math., 204:5 (2013), 683–725
Citation in format AMSBIB
\Bibitem{Pop13}
\by A.~Yu.~Popov
\paper The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros
\jour Sb. Math.
\yr 2013
\vol 204
\issue 5
\pages 683--725
\mathnet{http://mi.mathnet.ru//eng/sm8122}
\crossref{https://doi.org/10.1070/SM2013v204n05ABEH004317}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3098960}
\zmath{https://zbmath.org/?q=an:06212103}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..683P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321826200004}
\elib{https://elibrary.ru/item.asp?id=20359251}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888368257}
Linking options:
  • https://www.mathnet.ru/eng/sm8122
  • https://doi.org/10.1070/SM2013v204n05ABEH004317
  • https://www.mathnet.ru/eng/sm/v204/i5/p67
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:598
    Russian version PDF:207
    English version PDF:20
    References:80
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024