Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 10, Pages 1391–1434
DOI: https://doi.org/10.1070/SM2013v204n10ABEH004344
(Mi sm8104)
 

This article is cited in 44 scientific papers (total in 44 papers)

The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation

A. B. Kostin

National Engineering Physics Institute "MEPhI", Moscow
References:
Abstract: We study the inverse problem for a parabolic equation of recovering the source, that is, the right-hand side $F(x,t)=h(x,t)f(x)$, where the function $f(x)$ is unknown. To find $f(x)$, along with the initial and boundary conditions, we also introduce an additional condition of nonlocal observation of the form $\displaystyle\int_{0}^{T}u(x,t)\,d\mu(t)=\chi(x)$. We prove the Fredholm property for the problem stated in this way, and obtain sufficient conditions for the existence and uniqueness of a solution. These conditions are of the form of readily verifiable inequalities and put no restrictions on the value of $T>0$ or the diameter of the domain $\Omega$ under consideration. The proof uses a priori estimates and the qualitative properties of solutions of initial-boundary value problems for parabolic equations.
Bibliography: 40 titles.
Keywords: inverse problems, parabolic equations, nonlocal overdetermination.
Received: 16.01.2012 and 17.06.2013
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: Primary 35R30; Secondary 34A55
Language: English
Original paper language: Russian
Citation: A. B. Kostin, “The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation”, Sb. Math., 204:10 (2013), 1391–1434
Citation in format AMSBIB
\Bibitem{Kos13}
\by A.~B.~Kostin
\paper The inverse problem of recovering the source in a~parabolic equation under a~condition of nonlocal observation
\jour Sb. Math.
\yr 2013
\vol 204
\issue 10
\pages 1391--1434
\mathnet{http://mi.mathnet.ru//eng/sm8104}
\crossref{https://doi.org/10.1070/SM2013v204n10ABEH004344}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137159}
\zmath{https://zbmath.org/?q=an:1292.35329}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1391K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328685000001}
\elib{https://elibrary.ru/item.asp?id=21277033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890444282}
Linking options:
  • https://www.mathnet.ru/eng/sm8104
  • https://doi.org/10.1070/SM2013v204n10ABEH004344
  • https://www.mathnet.ru/eng/sm/v204/i10/p3
  • This publication is cited in the following 44 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1221
    Russian version PDF:373
    English version PDF:29
    References:104
    First page:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024