Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 2, Pages 263–285
DOI: https://doi.org/10.1070/SM2004v195n02ABEH000802
(Mi sm802)
 

This article is cited in 24 scientific papers (total in 24 papers)

The Banach–Saks index

E. M. Semenova, F. A. Sukochevb

a Voronezh State University
b Flinders University
References:
Abstract: The properties of the Banach–Saks index are studied in the class of rearrangement invariant spaces. The Banach–Saks indices of the spaces Lp,q and some Orlicz spaces are calculated. Generalizations of the Banach–Saks theorems are obtained.
Received: 23.06.2003
Bibliographic databases:
UDC: 517.982
MSC: 46E30
Language: English
Original paper language: Russian
Citation: E. M. Semenov, F. A. Sukochev, “The Banach–Saks index”, Sb. Math., 195:2 (2004), 263–285
Citation in format AMSBIB
\Bibitem{SemSuk04}
\by E.~M.~Semenov, F.~A.~Sukochev
\paper The Banach--Saks index
\jour Sb. Math.
\yr 2004
\vol 195
\issue 2
\pages 263--285
\mathnet{http://mi.mathnet.ru/eng/sm802}
\crossref{https://doi.org/10.1070/SM2004v195n02ABEH000802}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068953}
\zmath{https://zbmath.org/?q=an:1078.46010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221431900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-2542629729}
Linking options:
  • https://www.mathnet.ru/eng/sm802
  • https://doi.org/10.1070/SM2004v195n02ABEH000802
  • https://www.mathnet.ru/eng/sm/v195/i2/p117
  • This publication is cited in the following 24 articles:
    1. Dauren Matin, Yerlan Nessipbayev, Fedor Sukochev, Dmitriy Zanin, “Weak Grothendieck compactness principle for symmetric spaces”, Pacific J. Math., 333:1 (2024), 127  crossref
    2. Sergey V. Astashkin, “The structure of subspaces in Orlicz spaces lying between L1 and L2”, Math. Z., 303:4 (2023)  crossref
    3. Huang J., Sukochev F., “Isomorphic Classification of Lp,Q-Spaces, II”, J. Funct. Anal., 280:12 (2021), 108994  crossref  mathscinet  isi
    4. Sadovskaya O., Sukochev F., “Isomorphic Classification of l-P,l-Q-Spaces: the Case P=2, 1 <= Q < 2”, Proc. Amer. Math. Soc., 146:9 (2018), 3975–3984  crossref  mathscinet  zmath  isi  scopus
    5. Jiao Y., Sukochev F., Zanin D., Zhou D., “Johnson–Schechtman inequalities for noncommutative martingales”, J. Funct. Anal., 272:3 (2017), 976–1016  crossref  mathscinet  zmath  isi  scopus
    6. Chilin V., Litvinov S., “Individual ergodic theorems in noncommutative Orlicz spaces”, Positivity, 21:1 (2017), 49–59  crossref  mathscinet  zmath  isi  scopus
    7. Hernandez F.L., Semenov E.M., Tradacete P., “Interpolation and Extrapolation of Strictly Singular Operators Between l-P Spaces”, Adv. Math., 316 (2017), 667–690  crossref  mathscinet  zmath  isi  scopus
    8. A. Kuryakov, F. Sukochev, “Isomorphic classification of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math>-spaces”, Journal of Functional Analysis, 2015  crossref  mathscinet  zmath  scopus
    9. A. Kamińska, Han Ju Lee, “The Banach-Saks properties in Orlicz-Lorentz spaces”, Abstr. Appl. Anal., 2014 (2014), 423198, 8 pp.  crossref  mathscinet  zmath  isi
    10. A. Kamińska, Han Ju Lee, “Banach-Saks properties of Musielak-Orlicz and Nakano sequence spaces”, Proc. Amer. Math. Soc., 142:2 (2014), 547–558  mathscinet  zmath  isi
    11. Astashkin S.V., Sukochev F.A., Wong C.P., “Distributionally Concave Symmetric Spaces and Uniqueness of Symmetric Structure”, Adv. Math., 232:1 (2013), 399–431  crossref  mathscinet  zmath  isi  elib
    12. Hernández F.L., Semenov E.M., Tradacete P., “Strictly singular operators on Lp spaces and interpolation”, Proc. Amer. Math. Soc., 138:2 (2010), 675–686  crossref  mathscinet  zmath  isi  scopus
    13. A. I. Novikova, “The Banach–Saks index of some sequence spaces”, Siberian Math. J., 51:2 (2010), 296–300  mathnet  crossref  mathscinet  isi  elib  elib
    14. Sukochev F.A., Zanin D., “Khinchin inequality and Banach-Saks type properties in rearrangement-invariant spaces”, Studia Math., 191:2 (2009), 101–122  crossref  mathscinet  zmath  isi  elib
    15. Astashkin S.V., Semenov E.M., Sukochev F.A., “Banach-Saks type properties in rearrangement-invariant spaces with the Kruglov property”, Houston J. Math., 35:3 (2009), 959–973  mathscinet  zmath  isi  elib
    16. A. I. Novikova, “Indeksy Banakha–Saksa dlya podprostranstv Rademakhera”, Vestn. SamGU. Estestvennonauchn. ser., 2009, no. 4(70), 44–51  mathnet
    17. Astashkin S.V., Kalton N., Sukochev F.A., “Cesaro mean convergence of martingale differences in rearrangement invariant spaces”, Positivity, 12:3 (2008), 387–406  crossref  mathscinet  zmath  isi  elib
    18. A. I. Novikova, E. M. Semenov, F. A. Sukochev, “Banach-Saks index in spaces with symmetric basis”, Dokl. Math., 77:3 (2008), 396–397  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    19. Hernández F.L., Sánchez V.M., Semenov E.M., “Strictly singular inclusions into L1+L”, Math. Z., 258:1 (2007), 87–106  crossref  mathscinet  isi  scopus
    20. Lust-Piquard F., Sukochev F., “The p-Banach Saks property in symmetric operator spaces”, Illinois J. Math., 51:4 (2007), 1207–1229  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:673
    Russian version PDF:242
    English version PDF:24
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025