Abstract:
The properties of the Banach–Saks index are studied in the
class of rearrangement invariant spaces. The Banach–Saks
indices of the spaces
Lp,q and some Orlicz spaces
are calculated. Generalizations of the Banach–Saks theorems are obtained.
Hernandez F.L., Semenov E.M., Tradacete P., “Interpolation and Extrapolation of Strictly Singular Operators Between l-P Spaces”, Adv. Math., 316 (2017), 667–690
A. Kuryakov, F. Sukochev, “Isomorphic classification of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math>-spaces”, Journal of Functional Analysis, 2015
A. Kamińska, Han Ju Lee, “The Banach-Saks properties in Orlicz-Lorentz spaces”, Abstr. Appl. Anal., 2014 (2014), 423198, 8 pp.
A. Kamińska, Han Ju Lee, “Banach-Saks properties of Musielak-Orlicz and Nakano sequence spaces”, Proc. Amer. Math. Soc., 142:2 (2014), 547–558
Astashkin S.V., Sukochev F.A., Wong C.P., “Distributionally Concave Symmetric Spaces and Uniqueness of Symmetric Structure”, Adv. Math., 232:1 (2013), 399–431
Hernández F.L., Semenov E.M., Tradacete P., “Strictly singular operators on Lp spaces and interpolation”, Proc. Amer. Math. Soc., 138:2 (2010), 675–686
A. I. Novikova, “The Banach–Saks index of some sequence spaces”, Siberian Math. J., 51:2 (2010), 296–300
Sukochev F.A., Zanin D., “Khinchin inequality and Banach-Saks type properties in rearrangement-invariant spaces”, Studia Math., 191:2 (2009), 101–122
Astashkin S.V., Semenov E.M., Sukochev F.A., “Banach-Saks type properties in rearrangement-invariant spaces with the Kruglov property”, Houston J. Math., 35:3 (2009), 959–973
A. I. Novikova, “Indeksy Banakha–Saksa dlya podprostranstv Rademakhera”, Vestn. SamGU. Estestvennonauchn. ser., 2009, no. 4(70), 44–51
Astashkin S.V., Kalton N., Sukochev F.A., “Cesaro mean convergence of martingale differences in rearrangement invariant spaces”, Positivity, 12:3 (2008), 387–406
A. I. Novikova, E. M. Semenov, F. A. Sukochev, “Banach-Saks index in spaces with symmetric basis”, Dokl. Math., 77:3 (2008), 396–397