Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 11, Pages 1571–1588
DOI: https://doi.org/10.1070/SM2012v203n11ABEH004276
(Mi sm7915)
 

The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice $E_7$

V. P. Grishukhin

Central Economics and Mathematics Institute, RAS, Moscow
References:
Abstract: We show that the Minkowski sum $P_{\mathrm V}(E_7)+Z(U)$ of the Voronoi polytope $P_{\mathrm V}(E_7)$ of the root lattice $E_7$ and the zonotope $Z(U)$ is a 7-dimensional parallelohedron if and only if the set $U$ consists of minimal vectors of the dual lattice $E_7^*$ up to scalar multiplication, and $U$ does not contain forbidden sets. The minimal vectors of $E_7$ are the vectors $r$ of the classical root system $\mathbf E_7$. If the $r^2$-norm of the roots is set equal to 2, then the scalar products of minimal vectors from the dual lattice only take the values $\pm1/2$. A set of minimal vectors is referred to as forbidden if it consists of six vectors, and the directions of some of these vectors can be changed so as to obtain a set of six vectors with all the pairwise scalar products equal to $1/2$.
Bibliography: 11 titles.
Keywords: Minkowski sum, Voronoi polytope, zonotope, unimodular set, matroid.
Received: 21.07.2011 and 06.10.2011
Russian version:
Matematicheskii Sbornik, 2012, Volume 203, Number 11, Pages 41–60
DOI: https://doi.org/10.4213/sm7915
Bibliographic databases:
Document Type: Article
UDC: 511.9
MSC: 52B12
Language: English
Original paper language: Russian
Citation: V. P. Grishukhin, “The Minkowski sum of a zonotope and the Voronoi polytope of the root lattice $E_7$”, Mat. Sb., 203:11 (2012), 41–60; Sb. Math., 203:11 (2012), 1571–1588
Citation in format AMSBIB
\Bibitem{Gri12}
\by V.~P.~Grishukhin
\paper The Minkowski sum of a~zonotope and the Voronoi polytope of the root lattice~$E_7$
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 11
\pages 41--60
\mathnet{http://mi.mathnet.ru/sm7915}
\crossref{https://doi.org/10.4213/sm7915}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3053225}
\zmath{https://zbmath.org/?q=an:1264.52011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203.1571G}
\elib{https://elibrary.ru/item.asp?id=19066357}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 11
\pages 1571--1588
\crossref{https://doi.org/10.1070/SM2012v203n11ABEH004276}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000313837500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84873843883}
Linking options:
  • https://www.mathnet.ru/eng/sm7915
  • https://doi.org/10.1070/SM2012v203n11ABEH004276
  • https://www.mathnet.ru/eng/sm/v203/i11/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:403
    Russian version PDF:173
    English version PDF:11
    References:55
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024