Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 10, Pages 1445–1462
DOI: https://doi.org/10.1070/SM7913
(Mi sm7913)
 

The chromatic number of the space $(\mathbb R^n, l_1)$

E. S. Gorskayaa, I. M. Mitrichevab

a Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University
b Department of Innovations and High Technology, Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow region
References:
Abstract: The chromatic number of the space $(\mathbb R^n)$ with the $l_1$ metric $\| x\|=\sum_{i=1}^n{|x_i|}$ with $k$ forbidden distances is studied. It is defined as the minimum number of colours needed to colour all points in the space in such a way that no two points lying at a forbidden distance from each other in the $l_1$ metric have the same colour. The asymptotic growth of the chromatic numbers as $n\to\infty$ is estimated. The instrument of study is the linear algebra method, which reduces the problem of estimating chromatic numbers to another convex extremum problem. A numerical solution of this problem makes it possible to derive sharp estimates for the constants present in the bases of the lower asymptotic estimates for the chromatic numbers of multidimensional real spaces with several forbidden distances. The estimates obtained are optimal within the framework of the method proposed.
Bibliography: 27 titles.
Keywords: chromatic number, linear algebra method, convex problem.
Funding agency Grant number
Russian Foundation for Basic Research 09-01-00294-а
The work of I. M. Mitricheva was supported by the Russian Foundation for Basic Research (project no. 09-01-00294-а).
Received: 19.07.2011 and 30.03.2018
Russian version:
Matematicheskii Sbornik, 2018, Volume 209, Number 10, Pages 31–49
DOI: https://doi.org/10.4213/sm7913
Bibliographic databases:
Document Type: Article
UDC: 514.177.2+517.272+519.174
MSC: Primary 52C10; Secondary 05C15, 51M99
Language: English
Original paper language: Russian
Citation: E. S. Gorskaya, I. M. Mitricheva, “The chromatic number of the space $(\mathbb R^n, l_1)$”, Mat. Sb., 209:10 (2018), 31–49; Sb. Math., 209:10 (2018), 1445–1462
Citation in format AMSBIB
\Bibitem{GorMit18}
\by E.~S.~Gorskaya, I.~M.~Mitricheva
\paper The chromatic number of the space $(\mathbb R^n, l_1)$
\jour Mat. Sb.
\yr 2018
\vol 209
\issue 10
\pages 31--49
\mathnet{http://mi.mathnet.ru/sm7913}
\crossref{https://doi.org/10.4213/sm7913}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859408}
\elib{https://elibrary.ru/item.asp?id=35601297}
\transl
\jour Sb. Math.
\yr 2018
\vol 209
\issue 10
\pages 1445--1462
\crossref{https://doi.org/10.1070/SM7913}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454129300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059111587}
Linking options:
  • https://www.mathnet.ru/eng/sm7913
  • https://doi.org/10.1070/SM7913
  • https://www.mathnet.ru/eng/sm/v209/i10/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:287
    Russian version PDF:33
    English version PDF:10
    References:37
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024