Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 8, Pages 1211–1229
DOI: https://doi.org/10.1070/SM2012v203n08ABEH004261
(Mi sm7883)
 

This article is cited in 4 scientific papers (total in 4 papers)

Undecidability of the elementary theory of the semilattice of GLP-words

F. N. Pakhomov

M. V. Lomonosov Moscow State University
References:
Abstract: The Lindenbaum algebra of Peano PA can be enriched by the $n$-consistency operators which assign, to a given formula, the statement that the formula is compatible with the theory PA extended by the set of all true $\Pi_n$-sentences. In the Lindenbaum algebra of PA, a lower semilattice is generated from $\mathbf{1}$ by the $n$-consistency operators. We prove the undecidability of the elementary theory of this semilattice and the decidability of the elementary theory of the subsemilattice (of this semilattice) generated by the $0$-consistency and $1$-consistency operators only.
Bibliography: 16 titles.
Keywords: provability logic, elementary theories, undecidability.
Received: 02.05.2011
Bibliographic databases:
Document Type: Article
UDC: 510.673
MSC: Primary 03F45; Secondary 03B25, 03F25
Language: English
Original paper language: Russian
Citation: F. N. Pakhomov, “Undecidability of the elementary theory of the semilattice of GLP-words”, Sb. Math., 203:8 (2012), 1211–1229
Citation in format AMSBIB
\Bibitem{Pak12}
\by F.~N.~Pakhomov
\paper Undecidability of the elementary theory of the semilattice of GLP-words
\jour Sb. Math.
\yr 2012
\vol 203
\issue 8
\pages 1211--1229
\mathnet{http://mi.mathnet.ru//eng/sm7883}
\crossref{https://doi.org/10.1070/SM2012v203n08ABEH004261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024816}
\zmath{https://zbmath.org/?q=an:1268.03082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309818600007}
\elib{https://elibrary.ru/item.asp?id=19066576}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868613786}
Linking options:
  • https://www.mathnet.ru/eng/sm7883
  • https://doi.org/10.1070/SM2012v203n08ABEH004261
  • https://www.mathnet.ru/eng/sm/v203/i8/p141
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025