Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 1, Pages 75–113
DOI: https://doi.org/10.1070/SM2013v204n01ABEH004292
(Mi sm7871)
 

This article is cited in 17 scientific papers (total in 17 papers)

On the homotopy type of spaces of Morse functions on surfaces

E. A. Kudryavtseva

Faculty of Mechanics and Mathematics, Moscow State University
References:
Abstract: Let $M$ be a smooth closed orientable surface. Let $F$ be the space of Morse functions on $M$ with a fixed number of critical points of each index such that at least $\chi(M)+1$ critical points are labelled by different labels (numbered). The notion of a skew cylindric-polyhedral complex is introduced, which generalizes the notion of a polyhedral complex. The skew cylindric-polyhedral complex $\widetilde{\mathbb K}$ (“the complex of framed Morse functions”) associated with the space $F$ is defined. In the case $M=S^2$ the polytope $\widetilde{\mathbb K}$ is finite; its Euler characteristic $\chi(\widetilde{\mathbb K})$ is calculated and the Morse inequalities for its Betti numbers $\beta_j(\widetilde{\mathbb K})$ are obtained. The relation between the homotopy types of the polytope $\widetilde{\mathbb K}$ and the space $F$ of Morse functions equipped with the $C^\infty$-topology is indicated.
Bibliography: 51 titles.
Keywords: Morse functions, complex of framed Morse functions, polyhedral complex, $C^\infty$-topology, universal moduli space.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00748-а
Ministry of Education and Science of the Russian Federation НШ-1410.2012.1
14.740.11.0794
Received: 30.03.2011 and 19.12.2011
Russian version:
Matematicheskii Sbornik, 2013, Volume 204, Number 1, Pages 79–118
DOI: https://doi.org/10.4213/sm7871
Bibliographic databases:
Document Type: Article
UDC: 515.164.174+515.164.22+515.122.55
MSC: Primary 58D15; Secondary 57R45, 57R70, 58E05
Language: English
Original paper language: Russian
Citation: E. A. Kudryavtseva, “On the homotopy type of spaces of Morse functions on surfaces”, Mat. Sb., 204:1 (2013), 79–118; Sb. Math., 204:1 (2013), 75–113
Citation in format AMSBIB
\Bibitem{Kud13}
\by E.~A.~Kudryavtseva
\paper On the homotopy type of spaces of Morse functions on surfaces
\jour Mat. Sb.
\yr 2013
\vol 204
\issue 1
\pages 79--118
\mathnet{http://mi.mathnet.ru/sm7871}
\crossref{https://doi.org/10.4213/sm7871}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3060077}
\zmath{https://zbmath.org/?q=an:06197056}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204...75K}
\elib{https://elibrary.ru/item.asp?id=19066599}
\transl
\jour Sb. Math.
\yr 2013
\vol 204
\issue 1
\pages 75--113
\crossref{https://doi.org/10.1070/SM2013v204n01ABEH004292}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317573800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876707596}
Linking options:
  • https://www.mathnet.ru/eng/sm7871
  • https://doi.org/10.1070/SM2013v204n01ABEH004292
  • https://www.mathnet.ru/eng/sm/v204/i1/p79
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:695
    Russian version PDF:185
    English version PDF:25
    References:113
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024