Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 12, Pages 1775–1805
DOI: https://doi.org/10.1070/SM2003v194n12ABEH000786
(Mi sm786)
 

This article is cited in 5 scientific papers (total in 5 papers)

Beta functions of Bruhat–Tits buildings and deformation of $l^2$ on the set of $p$-adic lattices

Yu. A. Neretin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
References:
Abstract: For the space $\operatorname{Lat}_n$ of all lattices in an $n$-dimensional $p$-adic linear space an analogue of the matrix beta function is constructed; this beta function can degenerate to the Tamagawa zeta function. An analogue of Berezin kernels for $\operatorname{Lat}_n$ is proposed. Conditions for the positive-definiteness of these kernels and an explicit Plancherel's formula are obtained.
Received: 12.05.2003
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 12, Pages 31–62
DOI: https://doi.org/10.4213/sm786
Bibliographic databases:
UDC: 519.46
MSC: 20E42, 37A45, 53C35
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “Beta functions of Bruhat–Tits buildings and deformation of $l^2$ on the set of $p$-adic lattices”, Mat. Sb., 194:12 (2003), 31–62; Sb. Math., 194:12 (2003), 1775–1805
Citation in format AMSBIB
\Bibitem{Ner03}
\by Yu.~A.~Neretin
\paper Beta functions of Bruhat--Tits buildings and deformation of $l^2$
on the~set of $p$-adic lattices
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 12
\pages 31--62
\mathnet{http://mi.mathnet.ru/sm786}
\crossref{https://doi.org/10.4213/sm786}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2052695}
\zmath{https://zbmath.org/?q=an:1060.22008}
\elib{https://elibrary.ru/item.asp?id=14470916}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 12
\pages 1775--1805
\crossref{https://doi.org/10.1070/SM2003v194n12ABEH000786}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220189500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642322454}
Linking options:
  • https://www.mathnet.ru/eng/sm786
  • https://doi.org/10.1070/SM2003v194n12ABEH000786
  • https://www.mathnet.ru/eng/sm/v194/i12/p31
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:536
    Russian version PDF:223
    English version PDF:18
    References:54
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024