Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 6, Pages 864–892
DOI: https://doi.org/10.1070/SM2012v203n06ABEH004246
(Mi sm7846)
 

This article is cited in 1 scientific paper (total in 1 paper)

Invariant subspaces in some function spaces on the light cone in $\mathbb R^3$

S. S. Platonov

Petrozavodsk State University, Faculty of Mathematics
References:
Abstract: For certain topological vector spaces of functions on the light cone $X$ in $\mathbb R^3$ we obtain a complete description of all the closed linear subspaces which are invariant with respect to the natural quasiregular representation of the group $\mathbb R\oplus\operatorname{SO}_0(1,2)$. In particular, we give a description of irreducible and indecomposable invariant subspaces. Among the function spaces we consider we include, in particular, the spaces $C(X)$ and $\mathscr E(X)$ of continuous and infinitely differentiable functions on $X$ and also function spaces formed by functions with exponential growth on $X$.
Bibliography: 32 titles.
Keywords: invariant subspaces, quasiregular representation, light cone, homogeneous spaces, harmonic analysis.
Received: 18.01.2011
Bibliographic databases:
Document Type: Article
UDC: 517.986.6
MSC: Primary 43A45; Secondary 22E30, 43A85
Language: English
Original paper language: Russian
Citation: S. S. Platonov, “Invariant subspaces in some function spaces on the light cone in $\mathbb R^3$”, Sb. Math., 203:6 (2012), 864–892
Citation in format AMSBIB
\Bibitem{Pla12}
\by S.~S.~Platonov
\paper Invariant subspaces in some function spaces on the light cone in~$\mathbb R^3$
\jour Sb. Math.
\yr 2012
\vol 203
\issue 6
\pages 864--892
\mathnet{http://mi.mathnet.ru//eng/sm7846}
\crossref{https://doi.org/10.1070/SM2012v203n06ABEH004246}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2984657}
\zmath{https://zbmath.org/?q=an:06084157}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..864P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307816000005}
\elib{https://elibrary.ru/item.asp?id=19066511}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864992973}
Linking options:
  • https://www.mathnet.ru/eng/sm7846
  • https://doi.org/10.1070/SM2012v203n06ABEH004246
  • https://www.mathnet.ru/eng/sm/v203/i6/p101
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024