Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 3, Pages 424–458
DOI: https://doi.org/10.1070/SM2012v203n03ABEH004229
(Mi sm7837)
 

This article is cited in 9 scientific papers (total in 10 papers)

Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups

N. I. Nessonov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
References:
Abstract: Let $\mathbb N$ be the set of positive integers and $\mathfrak S_\infty$ the set of finite permutations of $\mathbb N$. For a partition $\Pi$ of the set $\mathbb N$ into infinite parts $\mathbb A_1,\mathbb A_2, \dots$ we denote by $\mathfrak S_\Pi$ the subgroup of $\mathfrak S_\infty$ whose elements leave invariant each of the sets $\mathbb A_j$. We set $\mathfrak S_\infty^{(N)}= \{s\in \mathfrak S_\infty : s(i)=i\ \text{for any}\ i=1,2,\dots,N\}$. A factor representation $T$ of the group $\mathfrak S_\infty$ is said to be $\Pi$-admissible if for some $N$ it contains a nontrivial identity subrepresentation of the subgroup $\mathfrak S_\Pi\cap\mathfrak S_\infty^{(N)}$. In the paper, we obtain a classification of the $\Pi$-admissible factor representations of $\mathfrak S_\infty$.
Bibliography: 14 titles.
Keywords: factor representation, Young subgroup, $\Pi$-admissible representation.
Received: 28.12.2010 and 12.05.2011
Bibliographic databases:
Document Type: Article
UDC: 517.986
MSC: Primary 20C32; Secondary 20B30
Language: English
Original paper language: Russian
Citation: N. I. Nessonov, “Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups”, Sb. Math., 203:3 (2012), 424–458
Citation in format AMSBIB
\Bibitem{Nes12}
\by N.~I.~Nessonov
\paper Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups
\jour Sb. Math.
\yr 2012
\vol 203
\issue 3
\pages 424--458
\mathnet{http://mi.mathnet.ru//eng/sm7837}
\crossref{https://doi.org/10.1070/SM2012v203n03ABEH004229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961735}
\zmath{https://zbmath.org/?q=an:1248.20013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..424N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304048700006}
\elib{https://elibrary.ru/item.asp?id=19066454}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861323692}
Linking options:
  • https://www.mathnet.ru/eng/sm7837
  • https://doi.org/10.1070/SM2012v203n03ABEH004229
  • https://www.mathnet.ru/eng/sm/v203/i3/p127
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:502
    Russian version PDF:193
    English version PDF:14
    References:57
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024