|
This article is cited in 9 scientific papers (total in 10 papers)
Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups
N. I. Nessonov B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
Abstract:
Let $\mathbb N$ be the set of positive integers and $\mathfrak S_\infty$ the set of finite permutations of $\mathbb N$. For a partition $\Pi$ of the set $\mathbb N$ into infinite parts $\mathbb A_1,\mathbb A_2, \dots$ we denote by $\mathfrak S_\Pi$ the subgroup of $\mathfrak S_\infty$ whose elements leave invariant each of the sets $\mathbb A_j$. We set $\mathfrak S_\infty^{(N)}= \{s\in \mathfrak S_\infty : s(i)=i\ \text{for any}\ i=1,2,\dots,N\}$. A factor representation $T$ of the group $\mathfrak S_\infty$ is said to be $\Pi$-admissible if for some $N$ it contains a nontrivial identity subrepresentation of the subgroup
$\mathfrak S_\Pi\cap\mathfrak S_\infty^{(N)}$. In the paper, we obtain a classification of the $\Pi$-admissible factor representations of $\mathfrak S_\infty$.
Bibliography: 14 titles.
Keywords:
factor representation, Young subgroup, $\Pi$-admissible representation.
Received: 28.12.2010 and 12.05.2011
Citation:
N. I. Nessonov, “Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups”, Sb. Math., 203:3 (2012), 424–458
Linking options:
https://www.mathnet.ru/eng/sm7837https://doi.org/10.1070/SM2012v203n03ABEH004229 https://www.mathnet.ru/eng/sm/v203/i3/p127
|
Statistics & downloads: |
Abstract page: | 502 | Russian version PDF: | 193 | English version PDF: | 14 | References: | 57 | First page: | 7 |
|