Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 1, Pages 1–27
DOI: https://doi.org/10.1070/SM2012v203n01ABEH004211
(Mi sm7825)
 

This article is cited in 25 scientific papers (total in 25 papers)

The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function

A. K. Gushchin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We consider a Dirichlet problem in which the boundary value of a solution is understood as the $L_p$-limit, $p>1$, of traces of this solution on surfaces ‘parallel’ to the boundary. We suggest a setting of this problem which (in contrast to the notion of solution in $W_{p,\operatorname{loc}}^1$) enables us to study the solvability of the problem without making smoothness assumptions on the coefficients inside the domain. In particular, for an equation in selfadjoint form without lower-order terms, under the same conditions as those used for $p=2$, we prove unique solvability and establish a bound for an analogue of the area integral.
Bibliography: 37 titles.
Keywords: elliptic equation, Dirichlet problem, boundary value.
Received: 25.11.2010 and 07.04.2011
Russian version:
Matematicheskii Sbornik, 2012, Volume 203, Number 1, Pages 3–30
DOI: https://doi.org/10.4213/sm7825
Bibliographic databases:
Document Type: Article
UDC: 517.956.223
MSC: 35J25
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Mat. Sb., 203:1 (2012), 3–30; Sb. Math., 203:1 (2012), 1–27
Citation in format AMSBIB
\Bibitem{Gus12}
\by A.~K.~Gushchin
\paper The Dirichlet problem for a~second-order elliptic equation with an $L_p$ boundary function
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 1
\pages 3--30
\mathnet{http://mi.mathnet.ru/sm7825}
\crossref{https://doi.org/10.4213/sm7825}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2933090}
\zmath{https://zbmath.org/?q=an:1244.35038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203....1G}
\elib{https://elibrary.ru/item.asp?id=19066309}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 1
\pages 1--27
\crossref{https://doi.org/10.1070/SM2012v203n01ABEH004211}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000301886900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858764762}
Linking options:
  • https://www.mathnet.ru/eng/sm7825
  • https://doi.org/10.1070/SM2012v203n01ABEH004211
  • https://www.mathnet.ru/eng/sm/v203/i1/p3
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1197
    Russian version PDF:273
    English version PDF:20
    References:152
    First page:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024