Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 2, Pages 153–182
DOI: https://doi.org/10.1070/SM2012v203n02ABEH004217
(Mi sm7798)
 

This article is cited in 24 scientific papers (total in 24 papers)

Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide

G. Cardonea, S. A. Nazarovb, K. Ruotsalainenc

a Facoltà di Ingegneria, Università degli Studi del Sannio
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
c University of Oulu
References:
Abstract: The existence of an eigenvalue embedded in the continuous spectrum is proved for the Neumann problem for Helmholtz's equation in a two-dimensional waveguide with two outlets to infinity which are half-strips of width $1$ and $1-\varepsilon$, where $\varepsilon>0$ is a small parameter. The width function of the part of the waveguide connecting these outlets is of order $\sqrt{\varepsilon}$; it is defined as a linear combination of three fairly arbitrary functions, whose coefficients are obtained from a certain nonlinear equation. The result is derived from an asymptotic analysis of an auxiliary object, the augmented scattering matrix.
Bibliography: 29 titles.
Keywords: acoustic waveguide, water waves in a channel, eigenvalues in the continuous spectrum, asymptotic behaviour, augmented scattering matrix.
Received: 11.10.2010 and 28.04.2011
Russian version:
Matematicheskii Sbornik, 2012, Volume 203, Number 2, Pages 3–32
DOI: https://doi.org/10.4213/sm7798
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.956.227
MSC: Primary 35J05, 35P05; Secondary 35P25
Language: English
Original paper language: Russian
Citation: G. Cardone, S. A. Nazarov, K. Ruotsalainen, “Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide”, Mat. Sb., 203:2 (2012), 3–32; Sb. Math., 203:2 (2012), 153–182
Citation in format AMSBIB
\Bibitem{CarNazRuo12}
\by G.~Cardone, S.~A.~Nazarov, K.~Ruotsalainen
\paper Asymptotic behaviour of an eigenvalue in the continuous spectrum of a~narrowed waveguide
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 2
\pages 3--32
\mathnet{http://mi.mathnet.ru/sm7798}
\crossref{https://doi.org/10.4213/sm7798}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962604}
\zmath{https://zbmath.org/?q=an:1238.35071}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..153C}
\elib{https://elibrary.ru/item.asp?id=19066409}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 2
\pages 153--182
\crossref{https://doi.org/10.1070/SM2012v203n02ABEH004217}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000302799500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859575907}
Linking options:
  • https://www.mathnet.ru/eng/sm7798
  • https://doi.org/10.1070/SM2012v203n02ABEH004217
  • https://www.mathnet.ru/eng/sm/v203/i2/p3
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1238
    Russian version PDF:227
    English version PDF:19
    References:103
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024