Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 4, Pages 527–546
DOI: https://doi.org/10.1070/SM2011v202n04ABEH004154
(Mi sm7753)
 

This article is cited in 4 scientific papers (total in 4 papers)

A proof of the Kontsevich-Soǐbel'man conjecture

A. I. Efimov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: It is well known that the ‘Fukaya category’ is actually an $A_\infty$-precategory in the sense of Kontsevich and Soǐbel'man. This is related to the fact that, generally speaking, the morphism spaces are defined only for transversal pairs of Lagrangian submanifolds, and higher multiplications are defined only for transversal sequences of Lagrangian submanifolds. Kontsevich and Soǐbel'man made the following conjecture: for any graded commutative ring $k$, the quasi-equivalence classes of $A_\infty$-precategories over $k$ are in bijection with the quasi-equivalence classes of $A_\infty$-categories over $k$ with strict (or weak) identity morphisms.
In this paper this conjecture is proved for essentially small $A_\infty$-(pre)categories when $k$ is a field. In particular, this implies that the Fukaya $A_\infty$-precategory can be replaced with a quasi-equivalent actual $A_\infty$-category.
Furthermore, a natural construction of the pretriangulated envelope for $A_\infty$-precategories is presented and it is proved that it is invariant under quasi-equivalences.
Bibliography: 8 titles.
Keywords: $A_\infty$-categories, Fukaya category, homological mirror symmetry.
Received: 10.06.2010 and 03.12.2010
Russian version:
Matematicheskii Sbornik, 2011, Volume 202, Number 4, Pages 65–84
DOI: https://doi.org/10.4213/sm7753
Bibliographic databases:
Document Type: Article
UDC: 512.66
MSC: Primary 18E30; Secondary 18G10, 53D37
Language: English
Original paper language: Russian
Citation: A. I. Efimov, “A proof of the Kontsevich-Soǐbel'man conjecture”, Mat. Sb., 202:4 (2011), 65–84; Sb. Math., 202:4 (2011), 527–546
Citation in format AMSBIB
\Bibitem{Efi11}
\by A.~I.~Efimov
\paper A proof of the Kontsevich-So\v{\i}bel'man conjecture
\jour Mat. Sb.
\yr 2011
\vol 202
\issue 4
\pages 65--84
\mathnet{http://mi.mathnet.ru/sm7753}
\crossref{https://doi.org/10.4213/sm7753}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830236}
\zmath{https://zbmath.org/?q=an:1223.18009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..527E}
\elib{https://elibrary.ru/item.asp?id=19066270}
\transl
\jour Sb. Math.
\yr 2011
\vol 202
\issue 4
\pages 527--546
\crossref{https://doi.org/10.1070/SM2011v202n04ABEH004154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292829300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959836620}
Linking options:
  • https://www.mathnet.ru/eng/sm7753
  • https://doi.org/10.1070/SM2011v202n04ABEH004154
  • https://www.mathnet.ru/eng/sm/v202/i4/p65
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1189
    Russian version PDF:423
    English version PDF:23
    References:99
    First page:126
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024