Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 9, Pages 1327–1346
DOI: https://doi.org/10.1070/SM2011v202n09ABEH004189
(Mi sm7742)
 

This article is cited in 2 scientific papers (total in 2 papers)

Direct and inverse theorems of rational approximation in the Bergman space

T. S. Mardvilkoa, A. A. Pekarskiib

a Belarussian State University of Computer Science and Radioelectronic Engineering
b Belarusian State University, Minsk
References:
Abstract: For positive numbers $p$ and $\mu$ let $A_{p,\mu}$ denote the Bergman space of analytic functions in the half-plane $\Pi:=\{z\in\mathbb C:\operatorname{Im} z>0\}$. For $f\in A_{p,\mu}$ let $R_n (f)_{p,\mu}$ be the best approximation by rational functions of degree at most $n$. Also let $\alpha\in\mathbb R$ and $\tau>0$ be numbers such that $\alpha+\mu=\frac{1}{\tau}-\frac{1}{p}>0$ and $\frac{1}{p}+\mu\notin\mathbb N$. Then the main result of the paper claims that the set of functions $f\in A_{p,\mu}$ such that
$$ \sum_{n=1}^\infty\frac{1}{n}(n^{\alpha+\mu} R_n (f)_{p,\mu})^\tau<\infty $$
is precisely the Besov space $B_\tau^\alpha$ of analytic functions in $\Pi$.
Bibliography: 23 titles.
Keywords: direct and inverse theorems of rational approximation, Bernstein-type inequalities, Jackson-type inequalities, Bergman spaces, Besov spaces.
Received: 17.05.2010
Bibliographic databases:
Document Type: Article
UDC: 517.538.52
MSC: 30E10, 30H20, 30H25
Language: English
Original paper language: Russian
Citation: T. S. Mardvilko, A. A. Pekarskii, “Direct and inverse theorems of rational approximation in the Bergman space”, Sb. Math., 202:9 (2011), 1327–1346
Citation in format AMSBIB
\Bibitem{MarPek11}
\by T.~S.~Mardvilko, A.~A.~Pekarskii
\paper Direct and inverse theorems of rational approximation in the Bergman space
\jour Sb. Math.
\yr 2011
\vol 202
\issue 9
\pages 1327--1346
\mathnet{http://mi.mathnet.ru//eng/sm7742}
\crossref{https://doi.org/10.1070/SM2011v202n09ABEH004189}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2884365}
\zmath{https://zbmath.org/?q=an:1252.30024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1327M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296920400004}
\elib{https://elibrary.ru/item.asp?id=19066305}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-81355135736}
Linking options:
  • https://www.mathnet.ru/eng/sm7742
  • https://doi.org/10.1070/SM2011v202n09ABEH004189
  • https://www.mathnet.ru/eng/sm/v202/i9/p77
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:756
    Russian version PDF:271
    English version PDF:24
    References:92
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024